Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139400

RESUMO

The role of an imbalanced high-fat diet in the pathophysiology of common chronic noncommunicable diseases has been known for years. More recently, the concept of 'gut microbiota' and the interaction between their composition and gut metabolites produced from the intake of dietary products have gained the focus of researchers, mostly from the perspective of the prevention of cardiovascular and metabolic disorders, which are still the leading cause of death globally. The aim of this work is to highlight the health benefits of the interaction between resveratrol (RSV), red grape polyphenol, and gut microbiota, through aspects of their therapeutic and preventive potentials. Since changed microbiota (mostly as a consequence of antibiotic overuse) contribute to the persistence of post ('long')-COVID-19 symptoms, these aspects will be covered too. Data were obtained from the electronic databases (MedLine/PubMed), according to specific keywords regarding the protective role of resveratrol, the gut microbiota, and their synergy. RSV exerts beneficial properties in the modulation of cardiovascular, metabolic, and post-COVID-19-related disorders. In healthy individuals, it maintains an ergogenic capacity, prevents oxidative stress, and modulates the inflammatory response. Overall, it improves quality of life. The RSV-gut-microbiota interaction is beneficial in terms of maintaining human health. Along with physical activity, it is key for the prevention of chronic noncommunicable diseases.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Doenças não Transmissíveis , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Qualidade de Vida , Dieta Hiperlipídica
2.
Life (Basel) ; 12(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35207581

RESUMO

Resveratrol (RSV), a plant-derived polyphenol, demonstrates broad-spectrum health benefits, including anti-proliferative, anti-inflammatory, antidiabetic, anti-ischemic and antioxidant effects. The aim of this review is to give an important heads-up regarding the influence of RSV as a phytoestrogen, RSV effects on most common pregnancy-related complications, as well as its impact on the embryogenesis, spermatogenesis, and women's reproductive health. Considering the important implications of RSV on human reproductive health, this overview could provide a groundwork, encouraging more detailed research at the clinical level.

3.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 133-144, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583792

RESUMO

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin present in a variety of plant species. Resveratrol has a wide spectrum of pharmacologic properties, and it exhibits versatile biological effects on different human and animal models. The studies have shown that potassium (K) channels can be potential targets in the mechanism of resveratrol action. K channels play a crucial role in maintaining membrane potential. Inhibition of K channels causes membrane depolarization and then contraction of smooth muscles, while the activation leads to membrane hyperpolarization and subsequently, relaxation. Five diverse types of K channels have been identified in smooth muscle cells in different tissue: ATP-sensitive K channels (KATP), voltage-dependent K channels (Kv), Ca2+ - and voltage-dependent K channels (BKCa), inward rectifier K channels (Kir), and tandem two-pore K channels (K2P). The expression and activity of K channels altered in many types of diseases. Aberrant function or expression of K channels can be underlying in pathologies such as cardiac arrhythmia, diabetes mellitus, hypertension, preterm birth, preeclampsia, and various types of cancer. Modulation of K channel activity by molecular approaches and selective drug development may be a novel treatment modality for these dysfunctions in the future. The plant-derived non-toxic polyphenols, such as resveratrol, can alter K channel activity and lead to the desired outcome. This review presents the basic properties, physiological, pathophysiological functions of K channels, and pharmacological roles of resveratrol on the major types of K channels that have been determined in smooth muscle cells.


Assuntos
Terapia de Alvo Molecular , Músculo Liso/metabolismo , Canais de Potássio/metabolismo , Resveratrol/farmacologia , Animais , Humanos , Músculo Liso/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Resveratrol/química , Vasodilatação/efeitos dos fármacos
4.
Eur J Pharmacol ; 882: 173281, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32562800

RESUMO

Voltage-gated potassium (Kv) channels are the largest superfamily of potassium (K) channels. A variety of Kv channels are expressed in the vascular smooth muscle cells (SMC). Studies have shown that gestational diabetes mellitus (GDM) and pregnancy-induced hypertension (PIH) cause various changes in the human umbilical vein (HUV). Recently, we have shown that 4-AP, a nonspecific Kv1-4 channel inhibitor, significantly decreases vasorelaxation induced by K channel opener pinacidil in vascular SMCs of the HUVs from normal pregnancies, but not in GDM and PIH. The goal of this study was to provide more detailed insight in the Kv channel subtypes involved in pinacidil-induced vasodilation of HUVs, as well as to investigate potential alterations of their function and expression during GDM and PIH. Margatoxin, a specific blocker of Kv1.2 and Kv1.3 channels, significantly antagonized pinacidil-induced vasorelaxation in normal pregnancy, while in HUVs from GDM and PIH that was not the case, indicating damage of Kv1.2 and Kv1.3 channel function. Immunohistochemistry and Western blot revealed similar expression of Kv1.2 channels in all groups. The expression of Kv1.3 subunit was significantly decreased in PIH, while it remained unchanged in GDM compared to normal pregnancy. Phrixotoxin, specific blocker of Kv4.2 and Kv4.3 channels, did not antagonize response to pinacidil in any of the groups. The major novel findings show that margatoxin antagonized pinacidil-induced relaxation in normal pregnancy, but not in GDM and PIH. Decreased expression of Kv1.3 channels in HUV during PIH may be important pathophysiological mechanism contributing to an increased risk of adverse pregnancy outcomes.


Assuntos
Hipertensão Induzida pela Gravidez/metabolismo , Canal de Potássio Kv1.3/metabolismo , Músculo Liso Vascular/metabolismo , Veias Umbilicais/metabolismo , Adulto , Anti-Hipertensivos/farmacologia , Diabetes Gestacional/metabolismo , Feminino , Humanos , Canal de Potássio Kv1.2/metabolismo , Pinacidil/farmacologia , Gravidez , Adulto Jovem
5.
Arch Environ Occup Health ; 75(7): 406-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32200732

RESUMO

Climate change is considered to have great impact on human health. The heat waves have been associated with excess morbidity and mortality of cardiovascular diseases (CVD) across various populations and geographic locations. Important role in the heat-induced cardiovascular damage has endothelial dysfunction. It has been noticed that hot weather can impair tone and structure of the blood vessels via interfering with variety of biological factors such as nitric oxide synthesize, cytokine production and systemic inflammation. Also, due to dehydration and increased blood viscosity, by promoting thrombogenesis, heat has important impact on patients with atherosclerosis. During chronic exposure to the cold or hot weather cardiovascular function can be decreased, leading to a higher risk of developing heart attack, malignant cardiac arrhythmias, thromboembolic diseases and heat-induced sepsis like shock. It has been shown that changes in the ambient temperature through increasing blood pressure, blood viscosity, and heart rate, contribute to the cardiovascular mortality. The majority of deaths due to heat waves especially affect individuals with preexisting chronic CVD. This population can experience a decline in the health status, since extreme ambient temperature affects pharmacokinetic parameters of many cardiovascular drugs. Increased mortality from ischemic or hemorrhagic stroke can also be related to extreme temperature variations. On a cellular level, higher ambient temperature can limit storage of ATP and O2 increase amount of free radicals and toxic substances and induce neuronal apoptotic signal transduction, which all can lead to a stroke. Preserving cardiovascular function in context of extreme climate changing tends to be particularly challenging.


Assuntos
Sistema Cardiovascular/fisiopatologia , Mudança Climática , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA