Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38744248

RESUMO

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio , Aceleradores de Partículas , Imagens de Fantasmas , Controle de Qualidade , Lítio/química , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Aceleradores de Partículas/instrumentação , Reprodutibilidade dos Testes , Polimetil Metacrilato/química , Nêutrons , Ouro/química , Alumínio/química , Água/química , Radiometria/métodos , Radiometria/instrumentação , Dosagem Radioterapêutica
2.
Appl Radiat Isot ; 199: 110898, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311297

RESUMO

An accelerator-based boron neutron capture therapy (AB-BNCT) system was installed at the Shonan Kamakura General Hospital (SKGH). We confirmed that a stable operation was possible for 1 h at a current of 30 mA. The evaluated thermal neutron flux was 2.8 × 109 cm-2 s-1 and in good agreement (±5%) with the calculated values. The daily variation was within ±2%. The ambient dose rate due to residual radioactivity after irradiation was approximately 5 µSv/h using a lead shutter.


Assuntos
Terapia por Captura de Nêutron de Boro , Hospitais Gerais , Terapia por Captura de Nêutron de Boro/métodos , Nêutrons
3.
Tomography ; 8(5): 2313-2329, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136889

RESUMO

Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in the human body). One of the main methods for proton range monitoring is to utilize the production of proton induced positron emitting radionuclides; these could be measured precisely with positron emission tomography (PET) systems. One main positron emitting radionuclide that could be used for proton range monitoring and verification was found to be 13N that produces a peak close to the Bragg peak. In the present work, we have employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the 13N peak for proton range monitoring and verification in inhomogeneous targets. Two different phantom types, namely, (1) ordinary slab and (2) MIRD anthropomorphic phantoms, were used. We have found that the generated 13N peak in such highly inhomogeneous targets (ordinary slab and human phantom) is close to the actual Bragg peak, when irradiated by incident proton beam. The feasibility of using the SA technique to estimate the distribution of positron emitter was also investigated. The current findings and the developed tools in the present work would be helpful in proton range monitoring and verification in realistic clinical radiation therapy using proton beams.


Assuntos
Terapia com Prótons , Prótons , Estudos de Viabilidade , Humanos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Terapia com Prótons/métodos
4.
PLoS One ; 17(2): e0263521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167589

RESUMO

The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.


Assuntos
Radioisótopos de Nitrogênio/farmacologia , Terapia com Prótons/métodos , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas
7.
J Appl Clin Med Phys ; 4(1): 85-90, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12540822

RESUMO

The purpose of this study was to investigate the usefulness of Fuji Computed Radiography (FCR) 5501D by comparing it with FCR 5000 and a screen-film system (S/F). Posteroanterior chest radiographs of ten patients with no abnormality on chest CT scans were obtained with FCR 5501D, FCR 5000, and S/F. Six observers (three radiologists and three radio-technologists) evaluated the visibility of nine normal anatomic structures (including lungs, soft tissue, and bones) and overall visibility on each image. Observers scored using a five-point scale on each structure. FCR 5000 showed a significantly higher score in soft tissue and bone structures, and overall visibility compared with S/F, but, there was no significant difference between them in the visibility of all four normal lung structures. Compared with S/F, the score for FCR 5501D was higher in eight of the nine normal structures, including three of the four lung structures (unobscured lung, retrocardiac lung, and subdiaphragmatic lung), and overall visibility. Compared with FCR 5000, the score for FCR 5501D was higher in three normal structures, including two of the four lung structures (unobscured lung and subdiaphragmatic lung), and overall visibility. FCR 5501D was the best among the three techniques to visualize normal anatomic structures, particularly the obscured and unobscured lung.


Assuntos
Radiografia Torácica/instrumentação , Radiografia Torácica/métodos , Tórax/anatomia & histologia , Filme para Raios X , Ecrans Intensificadores para Raios X , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Intensificação de Imagem Radiográfica/normas , Radiografia Abdominal/métodos , Radiografia Abdominal/normas , Radiografia Torácica/normas , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA