Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275562

RESUMO

One of the most advanced and versatile nanoscale diagnostic tools is atomic force microscopy. By enabling advanced imaging techniques, it allows us to determine various assets of a surface, including morphological, electrical, mechanical, magnetic, and thermal properties. Measuring local current flow is one of the very important methods of evaluation for, for instance, photovoltaic materials or semiconductor structures and other nanodevices. Due to contact areas, the current densities can easily reach above 1 kA/m2; therefore, special detection/measurement setups are required. They meet the required measurement range, sensitivity, noise level, and bandwidth at the measurement scale. Also, they prevent the sample from becoming damaged and prevent unwanted tip-sample issues. In this paper, we present three different nanoscale current measurement solutions, supported with test results, proving their performance.

2.
Ultramicroscopy ; 263: 113985, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759603

RESUMO

In this paper, we present the results of mechanical measurement of single nanowires (NWs) in a repeatable manner. Substrates with specifically designed mechanical features were used for NW placement and localization for measurements of properties such as Young's modulus or tensile strength of NW with an atomic force microscopy (AFM) system. Dense arrays of zinc oxide (ZnO) nanowires were obtained by one-step anodic oxidation of metallic Zn foil in a sodium bicarbonate electrolyte and thermal post-treatment. ZnO NWs with a hexagonal wurtzite structure were fixed to the substrates using focused electron beam-induced deposition (FEBID) and were annealed at different temperatures in situ. We show a 10-fold change in the properties of annealed materials as well as a difference in the properties of the NW materials from their bulk values with pre-annealed Young modulus at the level of 20 GPa and annealed reaching 200 GPa. We found the newly developed method to be much more versatile, allowing for in situ operations of NWs, including measurements with different methods of scanning probe microscopy.

3.
Sci Rep ; 14(1): 3996, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369551

RESUMO

The quantitative assessment of the image quality produced by atomic force microscopy (AFM) is an ongoing and challenging task. In our study, we demonstrate Shannon's application of information theory for measuring image quality. Specifically, we propose quantifying the loss of image information due to the various distortion processes by exploring the relationship between image information based on the information channel capacity (ICC), spectral image representation, and visual quality. Since the ideal image is unavailable, the power and noise spectrum, the critical input information for the image quality evaluation, must be robustly estimated in the proposed method. The classical, most popular Welch method for spectral estimation uses an average of several windowed periodograms and can produce biased spectrum estimates. Therefore, in our work, we discuss an alternative technique based on the wavelet transform that can be applied to solve this challenging problem, specifically in the case of noisy, uncertain AFM measurements. Finally, we validate the performance of the enhanced ICC-wavelet-based algorithm with noisy measurement AFM data.

4.
Nanotechnology ; 35(11)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064743

RESUMO

Platinum-carbon (PtC) composite nanowires were fabricated using focused electron beam induced deposition and postprocessed, and their performance as a nanoscale resistive thermal device (RTD) was evaluated. Nanowires were free-standing and deposited on a dedicated substrate to eliminate the influence of the substrate itself and of the halo effect on the results. The PtC free-standing nanowires were postprocessed to lower their electrical resistance using electron beam irradiation and thermal annealing using Joule heat both separately and combined. Postprocessed PtC free-standing nanowires were characterized to evaluate their noise figure (NF) and thermal coefficients at the temperature range from 30 K to 80 °C. The thermal sensitivity of RTD was lowered with the reduced resistance but simultaneously the NF improved, especially with electron-beam irradiation. The temperature measurement resolution achievable with the PtC free-standing nanowires was 0.1 K in 1 kHz bandwidth.

5.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686959

RESUMO

The measurement method, which utilizes nanomanipulation of the nanowires onto a specially prepared substrate, was presented. It introduced a four-point resistance measurement setup on a chip suited for scanning probe microscopy measurements, integrating connectors and a nanowire specimen. A study on the resistance and resistivity of the thermally post-treated ZnO nanowires at 200 °C and 300 °C in air showed the dependence of these electrical parameters on the annealing temperature. The investigations of the electrical properties of blocks built on the basis of nanowires and their related devices could provide a useful guide not only for designing, fabricating and optimizing electromechanical nanodevices based on nanowires but also for their safe operation in future electronic applications.

6.
Materials (Basel) ; 16(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570058

RESUMO

Formamidinium lead iodide (FAPbI3)-based perovskite solar cells have gained immense popularity over the last few years within the perovskite research community due to their incredible opto-electronic properties and the record power conversion efficiencies (PCEs) achieved by the solar cells. However, FAPbI3 is vulnerable to phase transitions even at room temperature, which cause structural instability and eventual device failure during operation. We performed post-treatment of the FAPbI3 surface with octyl ammonium iodide (OAI) in order to stabilize the active phase and preserve the crystal structure of FAPbI3. The formation of a 2D perovskite at the interface depends on the stoichiometry of the precursor. By optimizing the precursor stoichiometry and the concentration of OAI, we observe a synergistic effect, which results in improved power conversion efficiencies, reaching the best values of 22% on a glass substrate. Using physical and detailed optical analysis, we verify the presence of the 2D layer on the top of the 3D surface of the perovskite film.

7.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903107

RESUMO

This paper presents the possibilities of applying atomic force microscopy (AFM) techniques to the study of the wear of prosthetic biomaterials. In the conducted research, a zirconium oxide sphere was used as a test piece for mashing, which was moved over the surface of selected biomaterials: polyether ether ketone (PEEK) and dental gold alloy (Degulor M). The process was carried out with constant load force in an artificial saliva environment (Mucinox). An atomic force microscope with an active piezoresistive lever was used to measure wear at the nanoscale. The advantage of the proposed technology is the high resolution of observation (less than 0.5 nm) in the three-dimensional (3D) measurements in a working area of 50 × 50 × 10 µm. The results of nano wear measurements in two measurement setups are presented: zirconia sphere (Degulor M and zirconia sphere) and PEEK were examined. The wear analysis was carried out using appropriate software. Achieved results present a tendency coincident with the macroscopic parameters of materials.

8.
Ultramicroscopy ; 248: 113713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933435

RESUMO

High-resolution scanning probe microscopy (SPM) is a fundamental and efficient technology for surface characterization of modern materials at the subnanometre scale. The bottleneck of SPM is the probe and scanning tip. Materials with stable electrical, thermal, and mechanical properties for high-aspect-ratio (AR) tips are continuously being developed to improve their accuracy. Among these, GaN is emerging as a significant contender that serves as a replacement for standard Si probes. In this paper, for the first time, we present an approach that demonstrates the application of GaN microrods (MRs) as high-AR SPM probes. GaN MRs were grown using molecular beam epitaxy, transferred and mounted on a cantilever using focused electron beam-induced deposition and milled in a whisker tip using a focused ion beam in a scanning electron/ion microscope. The presence of a native oxide layer covering the GaN MR surface was confirmed by X-ray photoelectron spectroscopy. Current-voltage map measurements are also presented to indicate the elimination of the native oxide layer from the tip surface. The utility of the designed probes was tested using conductive atomic force microscopy and a 24-hour durability test in contact mode atomic force microscopy. Subsequently, the graphene stacks were imaged.

9.
Sci Rep ; 13(1): 466, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627337

RESUMO

We present a method for the quantitative determination of the photon force (PF)-the force generated by the radiation pressure of photons reflected from the surface. We propose an experimental setup integrating innovative microelectromechanical system (MEMS) optimized for the detection of photon force (pfMEMS). An active microcantilever was used as the force detector, while the measurement was conducted in a closed-loop setup with electromagnetic force compensation. In opposition to our previous works, this measurement method provides quantitative not qualitative assessment of PF interaction. Final current-balance setup is suitable for light sources from tens of microwatts to few watts. In our article, we present the results of the performed experiments, in which we measured the PF interactions in the range up to 67.5 pN with resolution of 30 fN in the static measurement.


Assuntos
Fótons
10.
Polymers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267679

RESUMO

Optical and structural properties of a blend thin film of (1:1 wt.) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) doped with iodine (I2) and then exposed to a stepwise heating were reported and compared with the properties of doped P3HT films. The UV-Vis(T) absorption measurements were performed in situ during annealing runs, at the precisely defined temperatures, in a range of 20-210 °C. It was demonstrated that this new method allows one to observe the changes of absorption spectra, connected with the iodine release and other structural processes upon annealing. In addition, the thermally-induced changes of the exciton bandwidth (W) and the absorption edge parameters, i.e., the energy gap (EG) and the Urbach energy (EU) were discussed in the context of different length of conjugation and the structural disorder in polymers and blends films. During annealing, several stages were distinguished and related to the following processes as: the iodine escape and an increase in P3HT crystallinity, the orderly stacking of polymer chains, the thermally inducted structural defects and the phase separation caused by an aggregation of PCBM in the polymer matrix. Moreover, the detailed X-ray diffraction studies, performed for P3HT and P3HT:PCBM films, before and after doping and then after their thermal treatment, allowed us to consider the structural changes of polymer and blend films. The effect of iodine content and the annealing process on the bulk heterojunction (BHJ) solar cells parameters was checked, by the impedance spectroscopy (IS) measurements and the J-V characteristics registration. All of the investigated P3HT:PCBM blend films showed the photovoltaic effect; the increase in power conversion efficiency (PCE) upon iodine doping was demonstrated.

11.
Nano Lett ; 21(13): 5493-5499, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34192467

RESUMO

A fundamental understanding and advancement of nanopatterning and nanometrology are essential in the future development of nanotechnology, atomic scale manipulation, and quantum technology industries. Scanning probe-based patterning/imaging techniques have been attractive for many research groups to conduct their research in nanoscale device fabrication and nanotechnology mainly due to its cost-effective process; however, the current tip materials in these techniques suffer from poor durability, limited resolution, and relatively high fabrication costs. Here, we report on employing GaN nanowires as a robust semiconductor material in scanning probe lithography (SPL) and microscopy (SPM) with a relatively low-cost fabrication process and the capability to provide sub-10 nm lithography and atomic scale (<1 nm) patterning resolution in field-emission scanning probe lithography (FE-SPL) and scanning tunneling microscopy (STM), respectively. We demonstrate that GaN NWs are great candidates for advanced SPL and imaging that can provide atomic resolution imaging and sub-10 nm nanopatterning on different materials in both vacuum and ambient operations.


Assuntos
Nanofios , Microscopia , Microscopia de Tunelamento , Nanotecnologia , Impressão
12.
J Mech Behav Biomed Mater ; 121: 104648, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153624

RESUMO

Contemporary prosthetic materials are characterized by highly specific preparation for a given application. This means that at the stage of their creation, not only their function is taken into account, but also the long-term behavior of this material during use. In the case of telescopic crowns, an important factor not yet appearing in the research is the aspect of adhesion force and its dependence on the type of biomaterial, but also the properties of human saliva. The use of artificial saliva, which creates a lubricating layer, reduces the wear on the surface of the telescopic crowns by reducing friction. The impact of artificial saliva on the formation of chemical bonds between prosthetic elements, thus contributing to the so-called retention force has not yet been studied. In this work, two types of measurements of gold telescopic crown materials in the aspect of the adhesion process are presented. Obtained results allowed to fully characterize this phenomenon. We modeled the load force between the microcircuit and the surface under study to suit the conditions between the primary and secondary crowns in the patient's mouth.


Assuntos
Coroas , Revestimento de Dentadura , Materiais Dentários , Planejamento de Prótese Dentária , Fricção , Humanos , Microscopia de Força Atômica
13.
Nanoscale ; 13(7): 4000-4015, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33471005

RESUMO

The rational design of novel self-assembled nanomaterials based on peptides remains a great challenge in modern chemistry. A hierarchical approach for the construction of nanofibrils based on α,ß-peptide foldamers is proposed. The incorporation of a helix-promoting trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue in the outer positions of the model coiled-coil peptide led to its increased conformational stability, which was established consistently by the results of CD, NMR and FT-IR spectroscopy. The designed oligomerization state in the solution of the studied peptides was confirmed using analytical ultracentrifugation. Moreover, the cyclopentane side chain allowed additional interactions between coiled-coil-like structures to direct the self-assembly process towards the formation of well-defined nanofibrils, as observed using AFM and TEM techniques.


Assuntos
Peptídeos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Ultracentrifugação
14.
Ultramicroscopy ; 221: 113188, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321422

RESUMO

In this paper we describe the design, technology and application of a test and reference sample for calibration and characterization of scanning thermal microscopy (SThM) probes and systems. In our solution temperature field in thin film structure, which is being contacted with the thermal tip is controlled in the traceable manner. The developed technology, integrating plasma etching of Pt and chemical-mechanical planarization (CMP) processing, enabled manufacturing a nanosize 100 nm thick Pt resistor on SiO2 with topography profile below 10 nm. Four-point setup makes it possible to generate and measure (in other words control) a defined temperature field of such a structure. The size of the thermally active structure is big enough to enable reliable SThM measurements and small enough to reduce the parasitic heat transport between the surface and the cantilever platform. The proposed solution enables measurement of the output signal of the scanning thermal microscope measurement system when the temperature of the reference sample is varied in the quantitative way. Furthermore, basing on the determined sensitivity the assessment of the resolution capabilities is possible.

15.
Viruses ; 12(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272740

RESUMO

Bacterial biofilm prevention and eradication are common treatment problems, hence there is a need for advanced and precise experimental methods for its monitoring. Bacterial resistance to antibiotics has resulted in an interest in using a natural bacterial enemy-bacteriophages. In this study, we present the application of quartz tuning forks (QTF) as impedance sensors to determine in real-time the direct changes in Pseudomonas aeruginosa PAO1 biofilm growth dynamics during Pseudomonas phage LUZ 19 treatment at different multiplicities of infection (MOI). The impedance of the electric equivalent circuit (EEC) allowed us to measure the series resistance (Rs) corresponding to the growth-medium resistance (planktonic culture changes) and the conductance (G) corresponding to the level of QTF sensor surface coverage by bacterial cells and the extracellular polymer structure (EPS) matrix. It was shown that phage impacts on sessile cells (G dynamics) was very similar in the 10-day biofilm development regardless of applied MOI (0.1, 1 or 10). The application of phages at an early stage (at the sixth h) and on three-day biofilm caused a significant slowdown in biofilm dynamics, whereas the two-day biofilm turned out to be insensitive to phage infection. We observed an inhibitory effect of phage infection on the planktonic culture (Rs dynamics) regardless of the MOI applied and the time point of infection. Moreover, the Rs parameter made it possible to detect PAO1 population regrowth at the latest time points of incubation. The number of phage-insensitive forms reached the level of untreated culture at around the sixth day of infection. We conclude that the proposed impedance spectroscopy technique can be used to measure the physiological changes in the biofilm matrix composition, as well as the condition of planktonic cultures in order to evaluate the activity of anti-biofilm compounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Espectroscopia Dielétrica/métodos , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Meios de Cultura , Matriz Extracelular de Substâncias Poliméricas/fisiologia
16.
Micron ; 129: 102792, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31811975

RESUMO

In this paper we present a metrological method for determination of mass density of focused ion beam induced deposition (FIBID) materials using quartz tuning fork (QTF) mass change sensors. Dimension and density determination of FIBID deposited nanostructures is necessary to develop and reliable and repeatable microfabribrication technology of the highest versatility. The proposed metrological methodology allows to determine mass change with 5 pg resolution and accuracy below 5 % if density is considered. The described method is suitable for precise FIBID precursor parameters determination conducted during the deposition as actuation and signal read-out of the applied QTF can be performed electrically. High accuracy, resolution and stability are ensured due to excellent properties of quartz forming the sensor structure.

17.
Sensors (Basel) ; 19(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614863

RESUMO

This paper presents a comprehensive modeling and experimental verification of active piezoresistive atomic force microscopy (AFM) cantilevers, which are the technology enabling high-resolution and high-speed surface measurements. The mechanical structure of the cantilevers integrating Wheatstone piezoresistive was modified with the use of focused ion beam (FIB) technology in order to increase the deflection sensitivity with minimal influence on structure stiffness and its resonance frequency. The FIB procedure was conducted based on the finite element modeling (FEM) methods. In order to monitor the increase in deflection sensitivity, the active piezoresistive cantilever was deflected using an actuator integrated within, which ensures reliable and precise assessment of the sensor properties. The proposed procedure led to a 2.5 increase in the deflection sensitivity, which was compared with the results of the calibration routine and analytical calculations.

18.
Nanotechnology ; 30(24): 245708, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30836333

RESUMO

We have examined the influence of flake-substrate effects that affect one and few layers of MoS2 in terms of their electrical and optical properties. In the measurements, we used SiO2/Si substrates with etched cavities and aluminum electrodes. Suspended areas are easily identifiable both on images depicting the topography and on the surface potential maps measured with the Kelvin probe force microscopy. Compared to the SiO2/Si supported material, surface potential decrease is observable at the membrane. The surface potential value of the flakes located on the electrodes is the lowest. PL measurements prove that single MoS2 monolayer was obtained. Suspended regions are also correlated with maps obtained as a result of Raman spectroscopy.

19.
Acta Bioeng Biomech ; 21(4): 123-129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32022795

RESUMO

PURPOSE: The surface roughness of the dental restorations is significant to the denture plaque adhesion. METHODS: In this work, we present the complex analysis of the electropolished CoCrW alloy remanium® star (Dentaurum, Germany) samples with laserengraved fiducial marks performed using complementary set of micro- and nanoscopic techniques: optical profilometry (OP), atomic force microscopy (AFM), scanning electron microscopy (SEM) and focused ion beam (FIB) milling. RESULTS: Both mean and RMS roughness of the samples were reduced by electopolishing process, however, the results obtained using OP and AFM exhibited some discrepancies. This was caused by the relatively high local protruding defects developed on the processed surface. The cross-sections of the protrusions were made to analyze the cause of their formation as the EDS elemental content maps revealed that their composition was uniform. We also analyzed the local roughness in the smaller areas free from the defects. CONCLUSIONS: In that case, both OP and AFM techniques delivered the same results. Analysis of results showed that various methods used for the surface roughness evaluation have to be used simultaneously to obtain complete and true analysis of the technological CoCrW samples.


Assuntos
Osso e Ossos/fisiologia , Dentaduras , Eletrólise , Nanotecnologia/métodos , Microscopia de Força Atômica , Nanopartículas , Espectrometria por Raios X , Propriedades de Superfície
20.
Ultramicroscopy ; 194: 100-107, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099332

RESUMO

The application of single-pass multifrequency Kelvin probe force microscopy (KPFM) for topography and contact potential difference (CPD) measurements of organic self-assembled monolayers (SAM) is demonstrated. Four modes of mechanical and electrical cantilever excitation were tested in order to obtain the best possible resolution in the CPD measurements. The algorithm using maximum capacity of information channel for quantitative image quality assessment was proposed to compare and assess the quality of the recorded images and imaging modes. The improvement of the quality of CPD imaging in multiresonance operation was confirmed.


Assuntos
Microscopia de Força Atômica/métodos , Algoritmos , Eletricidade , Estudos de Avaliação como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA