Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077309

RESUMO

BACKGROUND: Mechanically gated PIEZO channels lead to an influx of cations, activation of additional Ca2+ channels, and cell depolarization. This study aimed to investigate PIEZO2's role in breast cancer. METHODS: The clinical relevance of PIEZO2 expression in breast cancer patient was analyzed in a publicly available dataset. Utilizing PIEZO2 overexpressed breast cancer cells, and in vitro and in vivo experiments were conducted. RESULTS: High expression of PIEZO2 was correlated with a worse survival in triple-negative breast cancer (TNBC) but not in other subtypes. Increased PEIZO2 channel function was confirmed in PIEZO2 overexpressed cells after mechanical stimulation. PIEZO2 overexpressed cells showed increased motility and invasive phenotypes as well as higher expression of SNAIL and Vimentin and lower expression of E-cadherin in TNBC cells. Correspondingly, high expression of PIEZO2 was correlated with the increased expression of epithelial-mesenchymal transition (EMT)-related genes in a TNBC patient. Activated Akt signaling was observed in PIEZO2 overexpressed TNBC cells. PIEZO2 overexpressed MDA-MB-231 cells formed a significantly higher number of lung metastases after orthotopic implantation. CONCLUSION: PIEZO2 activation led to enhanced SNAIL stabilization through Akt activation. It enhanced Vimentin and repressed E-cadherin transcription, resulting in increased metastatic potential and poor clinical outcomes in TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Canais Iônicos/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/genética , Vimentina/metabolismo
2.
J Gen Physiol ; 152(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32582958

RESUMO

The human mechanosensitive ion channel PIEZO1 is gated by membrane tension and regulates essential biological processes such as vascular development and erythrocyte volume homeostasis. Currently, little is known about PIEZO1 plasma membrane localization and organization. Using a PIEZO1-GFP fusion protein, we investigated whether cholesterol enrichment or depletion by methyl-ß-cyclodextrin (MBCD) and disruption of membrane cholesterol organization by dynasore affects PIEZO1-GFP's response to mechanical force. Electrophysiological recordings in the cell-attached configuration revealed that MBCD caused a rightward shift in the PIEZO1-GFP pressure-response curve, increased channel latency in response to mechanical stimuli, and markedly slowed channel inactivation. The same effects were seen in native PIEZO1 in N2A cells. STORM superresolution imaging revealed that, at the nanoscale, PIEZO1-GFP channels in the membrane associate as clusters sensitive to membrane manipulation. Both cluster distribution and diffusion rates were affected by treatment with MBCD (5 mM). Supplementation of polyunsaturated fatty acids appeared to sensitize the PIEZO1-GFP response to applied pressure. Together, our results indicate that PIEZO1 function is directly dependent on the membrane composition and lateral organization of membrane cholesterol domains, which coordinate the activity of clustered PIEZO1 channels.


Assuntos
Membrana Celular/química , Colesterol/química , Canais Iônicos , Mecanotransdução Celular , Humanos , Canais Iônicos/fisiologia
3.
Biochem Soc Trans ; 47(6): 1833-1842, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31754715

RESUMO

PIEZO proteins are large eukaryotic mechanically-gated channels that function as homotrimers. The basic PIEZO1 structure has been elucidated by CryoEM and it assembles into a protein-lipid dome. A curved lipid region allows for the transition to the lipid bilayer from the dome (footprint). Gating PIEZO1 is mediated by bilayer tension that induces an area change in the lipid dome. The footprint region is thought to be energetically important for changes in lateral tension. Amphipathic molecules can modulate channel function beyond the intrinsic gating properties of PIEZO1. As a result, molecules that modify lipid properties within the lipid-channel complex (footprint and dome) will profoundly affect channel kinetics. In this review, we summarize the effects some amphipathic molecules have on the lipid bilayer and PIEZO1 function. PIEZO1 has three states, closed, open and inactivated and amphipathic molecules influence these transitions. The amphipathic peptide, GsMTx4, inhibits the closed to open transition. While saturated fatty acids also prevent PIEZO1 gating, the effect is mediated by stiffening the lipids, presumably in both the dome and footprint region. Polyunsaturated fatty acids can increase disorder within the lipid-protein complex affecting channel kinetics. PIEZO1 can also form higher-ordered structures that confers new kinetic properties associated with clustered channels. Cholesterol-rich domains house PIEZO1 channels, and depletion of cholesterol causes a breakdown of those domains with changes to channel kinetics and channel diffusion. These examples underscore the complex effects lipophilic molecules can have on the PIEZO1 lipid dome structure and thus on the mechanical response of the cell.


Assuntos
Canais Iônicos/metabolismo , Animais , Colesterol/isolamento & purificação , Humanos , Ativação do Canal Iônico , Cinética , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular
4.
J Cell Sci ; 132(11)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31076516

RESUMO

The cell nucleus responds to mechanical cues with changes in size, morphology and motility. Previous work has shown that external forces couple to nuclei through the cytoskeleton network, but we show here that changes in nuclear shape can be driven solely by calcium levels. Fluid shear stress applied to MDCK cells caused the nuclei to shrink through a Ca2+-dependent signaling pathway. Inhibiting mechanosensitive Piezo1 channels through treatment with GsMTx4 prevented nuclear shrinkage. Piezo1 knockdown also significantly reduced the nuclear shrinkage. Activation of Piezo1 with the agonist Yoda1 caused similar nucleus shrinkage in cells not exposed to shear stress. These results demonstrate that the Piezo1 channel is a key element for transmitting shear force input to nuclei. To ascertain the relative contribution of Ca2+ to cytoskeleton perturbation, we examined F-actin reorganization under shear stress and static conditions, and showed that reorganization of the cytoskeleton is not necessary for nuclear shrinkage. These results emphasize the role of the mechanosensitive channels as primary transducers in force transmission to the nucleus.


Assuntos
Cálcio/metabolismo , Forma do Núcleo Celular/fisiologia , Células Epiteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Cães , Células Madin Darby de Rim Canino
5.
PLoS One ; 13(11): e0207309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30462693

RESUMO

PIEZO1 and PIEZO2 are mechanosensitive channels (MSCs) important for cellular function and mutations in them lead to human disorders. We examined how functional heteromers form between subunits of PIEZO1 using the mutants E2117K, E2117D, and E2117A. Homomers of E2117K do not conduct. E2117A homomers have low conductance with rapid inactivation, and those of E2117D have high conductance with slow inactivation. Pairing E2117K with E2117D or E2117A with E2117D gave rise to new channel species representing heteromers with distinct conductances. Whole-cell currents from co-expression of E2117A and E2117D fit well with a linear-combination model of homomeric channel currents suggesting that functional channels do not form from freely-diffusing, randomly-mixed monomers in-vitro. Whole-cell current from coexpressed PIEZO1/PIEZO2 also fit as a linear combination of homomer currents. High-resolution optical images of fluorescently-tagged channels support this interpretation because coexpressed subunits segregate into discrete domains.


Assuntos
Canais Iônicos/metabolismo , Mutação de Sentido Incorreto , Multimerização Proteica , Substituição de Aminoácidos , Células HEK293 , Humanos , Canais Iônicos/genética
6.
Sci Rep ; 8(1): 14267, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250223

RESUMO

Traumatic brain injury (TBI) elevates Abeta (Aß) peptides in the brain and cerebral spinal fluid. Aß peptides are amphipathic molecules that can modulate membrane mechanics. Because the mechanosensitive cation channel PIEZO1 is gated by membrane tension and curvature, it prompted us to test the effects of Aß on PIEZO1. Using precision fluid shear stress as a stimulus, we found that Aß monomers inhibit PIEZO1 at femtomolar to picomolar concentrations. The Aß oligomers proved much less potent. The effect of Aßs on Piezo gating did not involve peptide-protein interactions since the D and L enantiomers had similar effects. Incubating a fluorescent derivative of Aß and a fluorescently tagged PIEZO1, we showed that Aß can colocalize with PIEZO1, suggesting that they both had an affinity for particular regions of the bilayer. To better understand the PIEZO1 inhibitory effects of Aß, we examined their effect on wound healing. We observed that over-expression of PIEZO1 in HEK293 cells increased cell migration velocity ~10-fold, and both enantiomeric Aß peptides and GsMTx4 independently inhibited migration, demonstrating involvement of PIEZO1 in cell motility. As part of the motility study we examined the correlation of PIEZO1 function with tension in the cytoskeleton using a genetically encoded fluorescent stress probe. Aß peptides increased resting stress in F-actin, and is correlated with Aß block of PIEZO1-mediated Ca2+ influx. Aß inhibition of PIEZO1 in the absence of stereospecific peptide-protein interactions shows that Aß peptides modulate both cell membrane and cytoskeletal mechanics to control PIEZO1-triggered Ca2+ influx.


Assuntos
Peptídeos beta-Amiloides/genética , Lesões Encefálicas Traumáticas/genética , Canais Iônicos/genética , Estresse Mecânico , Actinas/genética , Actinas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Cálcio/metabolismo , Movimento Celular , Citoesqueleto/genética , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Peptídeos/metabolismo , Mapas de Interação de Proteínas/genética , Venenos de Aranha/metabolismo , Cicatrização/genética
8.
Channels (Austin) ; 11(3): 245-253, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28085630

RESUMO

Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In response to mechanical stimuliEC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular details ofEC cell mechanosensitivity are poorly understood. Recently, our group found that human and mouseEC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a humanEC cell model QGP-1 were blocked by the mechanosensitive channel blocker D-GsMTx4. In the present study we aimed to characterize the effects of the mechanosensitive ion channel inhibitor spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2 transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition of Piezo2 mechanosensitive currents by the spider peptide D-GsMTx4.


Assuntos
Canais Iônicos/antagonistas & inibidores , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Fenômenos Biomecânicos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos
9.
J Physiol ; 595(1): 79-91, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27392819

RESUMO

KEY POINTS: The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT: The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.


Assuntos
Células Enterocromafins/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Linhagem Celular , Humanos , Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Canais Iônicos/genética , Camundongos , Estimulação Física , Pressão , RNA Mensageiro/metabolismo , Serotonina/metabolismo
10.
PLoS One ; 11(3): e0151289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963637

RESUMO

PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the "split protein" is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone.


Assuntos
Canais Iônicos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Cinética , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína
11.
Nat Commun ; 7: 10366, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26785635

RESUMO

Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer. To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1-GFP fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer.


Assuntos
Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Sobrevivência Celular/fisiologia , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo
12.
PLoS One ; 10(5): e0125503, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955826

RESUMO

Members of the eukaryotic PIEZO family (the human orthologs are noted hPIEZO1 and hPIEZO2) form cation-selective mechanically-gated channels. We characterized the selectivity of human PIEZO1 (hPIEZO1) for alkali ions: K+, Na+, Cs+ and Li+; organic cations: TMA and TEA, and divalents: Ba2+, Ca2+, Mg2+ and Mn2+. All monovalent ions permeated the channel. At a membrane potential of -100 mV, Cs+, Na+ and K+ had chord conductances in the range of 35-55 pS with the exception of Li+, which had a significantly lower conductance of ~ 23 pS. The divalents decreased the single-channel permeability of K+, presumably because the divalents permeated slowly and occupied the open channel for a significant fraction of the time. In cell-attached mode, 90 mM extracellular divalents had a conductance for inward currents carried by the divalents of: 25 pS for Ba2+ and 15 pS for Ca2+ at -80 mV and 10 pS for Mg2+ at -50 mV. The organic cations, TMA and TEA, permeated slowly and attenuated K+ currents much like the divalents. As expected, the channel K+ conductance increased with K+ concentration saturating at ~ 45 pS and the KD of K+ for the channel was 32 mM. Pure divalent ion currents were of lower amplitude than those with alkali ions and the channel opening rate was lower in the presence of divalents than in the presence of monovalents. Exposing cells to the actin disrupting reagent cytochalasin D increased the frequency of openings in cell-attached patches probably by reducing mechanoprotection.


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Metais Alcalinos/metabolismo , Metais Alcalinoterrosos/metabolismo , Cátions Bivalentes , Cátions Monovalentes , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Expressão Gênica , Células HEK293 , Humanos , Canais Iônicos/genética , Transporte de Íons/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Técnicas de Patch-Clamp , Plasmídeos/química , Plasmídeos/metabolismo , Compostos de Amônio Quaternário/metabolismo , Tetraetilamônio/metabolismo , Transfecção
13.
J Biol Chem ; 290(8): 5167-5173, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561736

RESUMO

PIEZO1 is a recently cloned eukaryotic cation-selective channel that opens with mechanical force. We found that extracellular protonation inhibits channel activation by ≈90% by increased occupancy in the closed or the inactivated state. Titration between pH 6.3 and 8.3 exhibited a pK of ≈6.9. The steepness of the titration data suggests positive cooperativity, implying the involvement of at least two protonation sites. Whole-cell recordings yielded results similar to patches, and pH 6.5 reduced whole-cell currents by >80%. The effects were reversible. To assess whether pH acts on the open or the inactivated state, we tested a double-mutant PIEZO1 that does not inactivate. Cell-attached patches and whole-cell currents from this mutant channel were pH-insensitive. Thus, protonation appears to be associated with domain(s) of the channel involved with inactivation. pH also did not affect mutant channels with point mutations at position 2456 that are known to exhibit slow inactivation. To determine whether the physical properties of the membrane are altered by pH and thereby affect channel gating, we measured patch capacitance during mechanical stimuli at pH 6.5 and 7.3. The rate constants for changes in patch capacitance were independent of pH, suggesting that bilayer mechanics are not involved. In summary, low pH stabilizes the inactivated state. This effect may be important when channels are activated under pathological conditions in which the pH is reduced, such as during ischemia.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Canais Iônicos/genética , Isquemia/genética , Isquemia/metabolismo , Estrutura Terciária de Proteína
15.
Biophys J ; 105(4): 880-6, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23972840

RESUMO

PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Anemia Hemolítica Congênita/genética , Fenômenos Biomecânicos , Células HEK293 , Humanos , Hidropisia Fetal/genética , Canais Iônicos/genética , Cinética , Mutação , Pressão , Termodinâmica
16.
Proc Natl Acad Sci U S A ; 110(12): E1162-8, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487776

RESUMO

Familial xerocytosis (HX) in humans is an autosomal disease that causes dehydration of red blood cells resulting in hemolytic anemia which has been traced to two individual mutations in the mechanosensitive ion channel, PIEZO1. Each mutation alters channel kinetics in ways that can explain the clinical presentation. Both mutations slowed inactivation and introduced a pronounced latency for activation. A conservative substitution of lysine for arginine (R2456K) eliminated inactivation and also slowed deactivation, indicating that this mutant's loss of charge is not responsible for HX. Fitting the current vs. pressure data to Boltzmann distributions showed that the half-activation pressure, P1/2, for M2225R was similar to that of WT, whereas mutations at position 2456 were left shifted. The absolute stress sensitivity was calibrated by cotransfection and comparison with MscL, a well-characterized mechanosensitive channel from bacteria that is driven by bilayer tension. The slope sensitivity of WT and mutant human PIEZO1 (hPIEZO1) was similar to that of MscL implying that the in-plane area increased markedly, by ∼6-20 nm(2) during opening. In addition to the behavior of individual channels, groups of hPIEZO1 channels could undergo simultaneous changes in kinetics including a loss of inactivation and a long (∼200 ms), silent latency for activation. These observations suggest that hPIEZO1 exists in spatial domains whose global properties can modify channel gating. The mutations that create HX affect cation fluxes in two ways: slow inactivation increases the cation flux, and the latency decreases it. These data provide a direct link between pathology and mechanosensitive channel dysfunction in nonsensory cells.


Assuntos
Anemia Hemolítica Congênita/metabolismo , Hidropisia Fetal/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Substituição de Aminoácidos , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/patologia , Anemia Hemolítica Congênita/fisiopatologia , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/patologia , Hidropisia Fetal/fisiopatologia , Canais Iônicos/genética , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína
17.
J Neurosci ; 33(1): 273-85, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23283340

RESUMO

Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients. Ca(2+) influx through MS TRPC1 activates the protease calpain, which cleaves the integrin adaptor protein talin to reduce Src-dependent axon outgrowth, likely through altered adhesion turnover. We found that talin accumulates at the tips of dynamic filopodia, which is lost upon cleavage of talin by active calpain. This pathway may also be important in axon guidance decisions since asymmetric inhibition of MS TRPC1 is sufficient to induce growth cone turning. Together our results suggest that Ca(2+) influx through MS TRPC1 on filopodia activates calpain to control growth cone turning during development.


Assuntos
Axônios/metabolismo , Calpaína/metabolismo , Cones de Crescimento/metabolismo , Canais de Cátion TRPC/metabolismo , Talina/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Feminino , Masculino , Neurônios/citologia , Neurônios/metabolismo , Proteólise , Pseudópodes/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Canais de Cátion TRPC/genética , Xenopus , Proteínas de Xenopus/genética
18.
Channels (Austin) ; 6(4): 214-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22790400

RESUMO

Piezo ion channels have been found to be essential for mechanical responses in cells. These channels were first shown to exist in Neuro2A cells, and the gene was identified by siRNAs that diminished the mechanical response. Piezo channels are approximately 2500 amino acids long, have between 24-32 transmembrane regions, and appear to assemble into tetramers and require no other proteins for activity. They have a reversal potential around 0 mV and show voltage dependent inactivation. The channel is constitutively active in liposomes, indicating that no cytoskeletal elements are required. Heterologous expression of the Piezo protein can create mechanical sensitivity in otherwise insensitive cells.   Piezo1 currents in outside-out patches were blocked by the extracellular MSC inhibitor peptide GsMTx4. Both enantiomeric forms of GsMTx4 inhibited channel activity in a manner similar to endogenous mechanical channels. Piezo1 can adopt a tonic (non-inactivating) form with repeated stimulation. The transition to the non-inactivating form generally occurs in large groups of channels, indicating that the channels exist in domains, and once the domain is compromised, the members simultaneously adopt new properties. Piezo proteins are associated with physiological responses in cells, such as the reaction to noxious stimulus of Drosophila larvae. Recent work measuring cell crowding, shows that Piezo1 is essential for the removal of extra cells without apoptosis. Piezo1 mutations have also been linked to the pathological response of red blood cells in a genetic disease called Xerocytosis. These finding suggest that Piezo1 is a key player in cells' responses to mechanical stimuli.


Assuntos
Cátions/metabolismo , Canais Iônicos/metabolismo , Anemia Hemolítica Congênita/metabolismo , Anemia Hemolítica Congênita/patologia , Animais , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Hidropisia Fetal/metabolismo , Hidropisia Fetal/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Mecanotransdução Celular/efeitos dos fármacos , Mutação , Peptídeos/farmacologia , Venenos de Aranha/farmacologia
19.
Channels (Austin) ; 6(4): 282-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22790451

RESUMO

Piezo1 is a eukaryotic cation-selective mechanosensitive ion channel. To understand channel function in vivo, we first need to analyze and compare the response in the whole cell and the patch. In patches, Piezo1 inactivates and the current is fit well by a 3-state model with a single pressure-dependent rate. However, repeated stimulation led to an irreversible loss of inactivation. Remarkably, the loss of inactivation did not occur on a channel-by-channel basis but on all channels at the same time. Thus, the channels are in common mechanical domain. Divalent ions decreased the unitary conductance from ~68 pS to ~37 pS, irrespective of the cation species. Mg and Ca did not affect inactivation rates, but Zn caused a 3-fold slowing. CytochalasinD (cytoD) does not alter inactivation rates or the transition to the non-inactivating mode but does reduce the steady-state response. Whole-cell currents were similar to patch currents but also had significant differences. In contrast to the patch, cytoD inhibited the current suggesting that the activating forces were transmitted through the actin cytoskeleton. Hypotonic swelling that prestressed the cytoskeleton and the bilayer greatly increased the sensitivity of both control and cytoD cells so there are two pathways to transmit force to the channels. In contrast to patch, removing divalent ions decreased the whole-cell current. The difference between whole cell and patch properties provide new insights into our understanding of the Piezo1 gating mechanisms and cautions against generalization to in situ behavior.


Assuntos
Canais Iônicos/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Cálcio/farmacologia , Citocalasina D/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Bicamadas Lipídicas/metabolismo , Magnésio/farmacologia , Técnicas de Patch-Clamp , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA