Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1279: 341764, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827665

RESUMO

BACKGROUND: Comprehensive surfaceome profiling of cancer cells using mass spectrometry (MS)-based technologies is a valuable approach to identify new antigens that could be targeted by immunotherapies. Multiple myeloma (MM) is an incurable hematological malignancy in which patients suffer from multiple relapses associated with drug resistance. Nevertheless, only three MM-specific antigens are currently targeted by approved immunotherapies which restrain the availability of efficient treatments for severe refractory patients affected by aggressive forms of the disease. Therefore, the discovery of new antigens in this context could open new perspectives for those patients. RESULTS: In this study, the first objective was to improve a MS-based untargeted proteomics workflow in order to handle limited patient samples. For this purpose, a highly sensitive and robust miniaturized separation system (LC-Chip) coupled with drift tube ion mobility spectrometry and high-resolution MS was integrated in our workflow to maximize protein identification. As sample preparation can strongly influence the detectability of membrane-associated proteins, the critical steps in sample preparation were carefully optimized. As a result, 4.5 times more membrane-associated proteins were identified and experimental throughput was also drastically improved. In addition to workflow performance, particular attention was paid to assess the quality of the generated data. Indeed, several quality controls (QC) were implemented to assess data quality. Finally, the optimized workflow as well as selected QCs were evaluated in the analysis of samples containing limited number of cells. SIGNIFICANCE: This work allowed the improvement of an untargeted proteomics workflow for surfaceome profiling in terms of performance. Besides, the reliability of the obtained data was evaluated through the introduction of QCs in the workflow. The applicability of the improved workflow as well as the implemented QCs for the analysis of MM primary cells obtained from patients was confirmed.


Assuntos
Mieloma Múltiplo , Humanos , Proteômica/métodos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Proteínas de Membrana
2.
Hemasphere ; 7(7): e901, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37359190

RESUMO

Despite the recent introduction of next-generation immunotherapeutic agents, multiple myeloma (MM) remains incurable. New strategies targeting MM-specific antigens may result in a more effective therapy by preventing antigen escape, clonal evolution, and tumor resistance. In this work, we adapted an algorithm that integrates proteomic and transcriptomic results of myeloma cells to identify new antigens and possible antigen combinations. We performed cell surface proteomics on 6 myeloma cell lines based and combined these results with gene expression studies. Our algorithm identified 209 overexpressed surface proteins from which 23 proteins could be selected for combinatorial pairing. Flow cytometry analysis of 20 primary samples confirmed the expression of FCRL5, BCMA, and ICAM2 in all samples and IL6R, endothelin receptor B (ETB), and SLCO5A1 in >60% of myeloma cases. Analyzing possible combinations, we found 6 combinatorial pairs that can target myeloma cells and avoid toxicity on other organs. In addition, our studies identified ETB as a tumor-associated antigen that is overexpressed on myeloma cells. This antigen can be targeted with a new monoclonal antibody RB49 that recognizes an epitope located in a region that becomes highly accessible after activation of ETB by its ligand. In conclusion, our algorithm identified several candidate antigens that can be used for either single-antigen targeting approaches or for combinatorial targeting in new immunotherapeutic approaches in MM.

3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362139

RESUMO

The discovery of new antigens specific to multiple myeloma that could be targeted by novel immunotherapeutic approaches is currently of great interest. To this end, it is important to increase the number of proteins identified in the sample by combining different separation strategies. A capillary zone electrophoresis (CZE) method, coupled with drift tube ion mobility (DTIMS) and quadrupole time-of-flight mass spectrometry (QTOF), was developed for antigen discovery using the human myeloma cell line LP-1. This method was first optimized to obtain a maximum number of identifications. Then, its performance in terms of uniqueness of identifications was compared to data acquired by a microfluidic reverse phase liquid chromatography (RPLC) method. The orthogonality of these two approaches and the physicochemical properties of the entities identified by CZE and RPLC were evaluated. In addition, the contribution of DTIMS to CZE was investigated in terms of orthogonality as well as the ability to provide unique information. In conclusion, we believe that the combination of CZE-DTIMS-QTOF and microfluidic RPLC provides unique information in the context of antigen discovery.


Assuntos
Cromatografia de Fase Reversa , Mieloma Múltiplo , Humanos , Espectrometria de Massas em Tandem/métodos , Microfluídica , Linhagem Celular Tumoral , Eletroforese Capilar/métodos
4.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886845

RESUMO

Proteomics is one of the most significant methodologies to better understand the molecular pathways involved in diseases and to improve their diagnosis, treatment and follow-up. The investigation of the proteome of complex organisms is challenging from an analytical point of view, because of the large number of proteins present in a wide range of concentrations. In this study, nanofluidic chromatography, using a micropillar array column, was coupled to drift-tube ion mobility and time-of-flight mass spectrometry to identify as many proteins as possible in a protein digest standard of HeLa cells. Several chromatographic parameters were optimized. The high interest of drift-tube ion mobility to increase the number of identifications and to separate isobaric coeluting peptides was demonstrated. Multiplexed drift-tube ion mobility spectrometry was also investigated, to increase the sensitivity in proteomics studies. This innovative proteomics platform will be useful for analyzing patient samples to better understand unresolved disorders.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Células HeLa , Humanos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Proteoma , Proteômica/métodos
5.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32961048

RESUMO

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/sangue , Compostos Orgânicos/urina , Espectrometria de Massas em Tandem/métodos , Cátions/química , Bases de Dados de Compostos Químicos , Eletrólitos/química , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes
6.
J Sep Sci ; 43(13): 2728-2736, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281256

RESUMO

Biogenic amines have been reported in many foods such as fish, meat, and soy sauce. The consumption of foods containing high concentrations of biogenic amines has been associated with health hazards. In this study, a green and efficient method using supercritical fluid chromatography coupled with single quadrupole mass spectrometry was developed for determination of biogenic amines in soy sauce. The chromatographic and mass spectrometry conditions were systematically optimized in terms of selectivity and peak shape. Nine biogenic amines were well separated within 25 min on a Cosmosil 5HP column using 5% (v/v) water and 0.2% (v/v) ammonia solution in methanol as mobile phase additives at a backpressure of 120 bar and temperature of 40°C. The established method was fully validated regarding the linearity, sensitivity, precision, and accuracy. The limits of detection and limits of quantification ranged from 0.03 to 10.50 µg/mL and 0.10 to 23.1 µg/mL, respectively. The relative standard deviations for intra- and interday precisions were all lower than 9.36% and the recoveries ranged from 75.82 to 99.63% and 80.10 to 99.89% for two levels of standards spiked in soy sauce, respectively. Finally, the established method was successfully applied to the quantitative analysis of biogenic amines in soy sauce.


Assuntos
Aminas/análise , Cromatografia com Fluido Supercrítico , Alimentos de Soja/análise , Espectrometria de Massas , Estrutura Molecular
7.
J Chromatogr A ; 1618: 460873, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31987525

RESUMO

Capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is an interesting tool for proteomic analysis as the separation principle is orthogonal to liquid chromatography tandem mass spectrometry (LC-MS/MS). The combination of both techniques can bring complementary information to enlarge proteome coverage. In this study, sample preconcentration techniques were investigated in order to improve sample loading and therefore sensitivity. Dynamic pH junction (DPJ) was found to be the most interesting approach by using 200 mM ammonium acetate (NH4Ac) adjusted to pH 10.0 as sample matrix. The use of DPJ allowed the identification of more peptides and proteins compared to conventional injections. Moreover, the sheath liquid (SL) composition was optimized in order to enhance signal intensity. A nanoflow SL interface (EMASS-II) was compared to the traditional coaxial SL interface (Triple tube) in terms of number of identified and proteins as well as detection sensitivity (peak area and peak height). MS acquisition was performed using both data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes. The results showed that the combined use of these two acquisition modes provided additional information in terms of identification. Moreover, the use of EMASS-II interface allowed the identification of approximately two times more peptides and proteins. Besides, there was an improvement in sensitivity using EMASS-II as peak height and peak area were improved by 4 and 6-fold, respectively, compared to the Triple tube. Altogether, by combining an efficient sample preconcentration method, a nanoflow CE-MS interface and a hybrid ion-mobility qTOF mass spectrometer, a satisfying sequence coverage was obtained by analyzing 1 µg of E. coli proteome digest.


Assuntos
Eletroforese Capilar , Peptídeos , Proteômica/métodos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/isolamento & purificação , Proteoma
8.
J Chromatogr A ; 1614: 460716, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31761437

RESUMO

Oligonucleotide-based medicines that can modulate gene expression have numerous potential applications in targeted therapies. Most of the commercialized therapeutic oligonucleotides are chemically modified to increase their in vivo lifetime. In this work, we studied poly-deoxy(thymidylic) acids (dT) and modified phosphorothioate oligonucleotides (PS). Several analytical techniques, including ion-pair reverse phase liquid chromatography, are described in the literature to assess their quality but most of them present significant drawbacks. In the present study, dT and PS mixtures were analyzed by hydrophilic interaction liquid chromatography (HILIC) and capillary zone electrophoresis (CZE) coupled to ultraviolet detection. In HILIC, the selectivities of three types of stationary phases (dihydroxypropane, phosphorylcholine and amide) were compared. Optimal conditions were determined and consisted of an amide stationary phase with a mobile phase made up of water, acetonitrile and 15 mM ammonium acetate (pH 5.5). In those conditions, high resolving power and good repeatability were achieved. In CZE, the effect of the background electrolyte (BGE), its pH and concentration were evaluated. A BGE made up of 300 mM ammonium acetate adjusted to pH 6.0 was selected. Finally, the two techniques were compared in terms of selectivity, repeatability and peak efficiency. In the second part of the study, HILIC and CZE were both coupled to a drift-tube ion-mobility quadrupole time-of-flight MS detector (DTIMS-QTOF) to assess the added value of this coupling for oligonucleotide characterization. Indeed, by using the measured collision cross section (CCS), the evaluation of the number of nucleotides was performed. Looking across the results, HILIC and CZE coupled to DTIMS-QTOF can be considered as promising tools for the quality control of oligonucleotides.


Assuntos
Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Espectrometria de Massas , Oligonucleotídeos Fosforotioatos/química , Poli T/química , Acetatos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Mobilidade Iônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA