Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(11): 2121-2129, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452368

RESUMO

NH3OH+N5- is a novel energetic material (EM) which has attracted much interest for its promising performances, including high energy density, high density, low sensitivity, and low toxicity. In this study, the initial decomposition mechanism of NH3OH+N5- crystal was investigated under thermal and shock loading by molecular dynamics simulation. First, programmed heating and constant temperature simulations were carried out by molecular dynamics simulation on the basis of density functional theory (DFT-MD). Results indicated that the initial decomposition reactions of NH3OH+N5- could be described by three reactions: proton transfer, ring-opening reaction, and cation decomposition and recombination, and three pathways of ring-opening reaction were found, including the ring-opening of N5-, HN5, and H2N6. The first two reactions are the main pathways that produce N2 molecules. Furthermore, we carried out DFT-MD simulations to study the shock decomposition behaviors of NH3OH+N5-, and three initial steps were proposed: N5-, HN5, and N6 ring-opening. The fewer N5- and HN5 ring-opening reactions were found during the shock simulation, accompanied by a significant change in the N5- bond angle. What's more, the transition states of decomposition reactions were investigated through quantum chemical calculations. The results revealed that the proton transfer reaction exhibits lower activation barriers compared to ring-opening reactions, and proton transfer would accelerate ring-opening reactions. In addition, the ring-opening reaction is the main energy-releasing reaction in the early stages of the decomposition. This work could promote the comprehension of the decomposition mechanism and energy release regularity of N5- ions.

2.
Phys Chem Chem Phys ; 25(31): 20951-20968, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37496442

RESUMO

Reactive molecular dynamics (RMDs) calculations were used to determine, for the first time, the process of thermolysis of the mixed explosives, including 3-nitro-1,2,4-triazol-5-one (NTO) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoline (HMX). Significantly, this is the first time that a layered model for mixed explosives, which is an extreme innovation of mixed explosive models was adopted. It is shown that a large amount of NO2 in the HMX and OH groups generated by the decomposition of HNO2 has a favorable effect on the thermolysis of NTO, as further validated by a reduction in the activation energy of NTO/HMX. The amount of H2O and N2 in the resulting products increased significantly, but the amount of NH3 changed slightly. The analysis results correspond to the change in chemical bonds. Whenever there is an increase in temperature, the time for the maximum number of clusters to appear is shortened accordingly. In addition, the acidity of NTO has been considered. An independent gradient model based on Hirshfeld partition (IGMH) and atoms in molecule (AIM) analysis of NTO/HMX was implemented. The relatively strong hydrogen bonds indicate that HMX can inhibit the acidity of NTO and is beneficial for the wide application of NTO/HMX-based plastic-bonded explosives (PBXs).

3.
J Mol Model ; 29(6): 179, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195366

RESUMO

CONTEXT: 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) is a new energetic compound with high energy and high density, and it is an important component of propellant and melt cast explosive. In order to study the effect of solvent on the growth morphology of DNTF, the growth plane of DNTF in vacuum is predicted by attachment energy (AE) model, and then the modified attachment energy of each growth plane in different solvents is calculated by molecular dynamics simulation. The morphology of crystal in solvent is predicted by modified attachment energy (MAE) model. The factors affecting crystal growth in solvent environment are analyzed by mass density distribution, radial distribution function and diffusion coefficient. The results show that the growth morphology of crystal in solvent is not only related to the adsorption strength of solvent to crystal plane, but affected by the attraction of crystal plane to solute. The hydrogen bond plays an important role in the adsorption strength between solvent and crystal plane. The polarity of solvent has a great influence on the crystal morphology, and the interaction between the solvent with stronger polarity and the crystal plane is stronger. The morphology of DNTF in n-butanol solvent is closer to spherical, which can effectively reduce the sensitivity of DNTF. METHODS: The molecular dynamics simulation is carried out under the COMPASS force field of Materials Studio software. Gaussian software is used to calculate the electrostatic potential of DNTF at B3LYP-D3/6-311 + G (d, p) theoretical level.

4.
Org Lett ; 25(8): 1290-1294, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795059

RESUMO

A gem-dinitromethyl group was successfully introduced into the TNBI·2H2O structure (TNBI: 4,4',5,5'-tetranitro-2,2'-bi-1H-imidazole) to obtain 1-(dinitromethyl)-4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (DNM-TNBI). Benefiting from the transformation of an N-H proton into a gem-dinitromethyl group, the current limitations of TNBI were well solved. More importantly, DNM-TNBI has high density (1.92 g·cm-3, 298 K), good oxygen balance (15.3%), and excellent detonation properties (Dv = 9102 m·s-1, P = 37.6 GPa), suggesting that it has great potential as an oxidizer or a high-performance energetic material.

5.
J Mol Model ; 29(2): 39, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36640252

RESUMO

CONTEXT: The UV(ultraviolet) absorption spectrum of PETN under different electric field loading directions(X, Y, and Z) with the value of strength range from 0.001 a.u. to 0.006 a.u. was calculated with the TDDFT(Time-dependent density functional) in this work. With the increase of electric field strength, the absorbance of PETN in the ultraviolet band decreases. To explain the action mechanism of the electric field on PETN UV(ultraviolet) absorption spectrum, we analyzed and counted the contribution rate, oscillator strength, and vertical excitation energy of the main excitation process whose contribution rate to the UV absorption spectrum is greater than 10%. The contribution of PETN to the UV spectrum in all directions without an electric field was also listed to investigate the anisotropy of PETN in the excitation process under an electric field. The hole-electron analysis showed that the electric field will enhance the charge transfer characteristics in the excitation process of PETN. To investigate the anisotropy of the response under different electric field application directions, the contribution of the UV absorption spectrum in different directions was studied. METHODS: Optimization and TDDFT calculation were performed at the level of M06-2X/def2-TZVP and PBE0/def2-TZVP respectively, with Gaussian09 program. The hole-electron analysis and UV absorption spectrum plotting were performed with Multiwfn3.8.

6.
J Mol Model ; 28(12): 406, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451058

RESUMO

3-nitro-1,2,4-triazol-5-one (NTO)-based polymer-bonded explosives (PBXs) have been widely used in insensitive munitions, but the main properties of NTO-based PBXs such as compatibility, safety performance, and mechanical properties are rarely reported. In this work, molecular dynamics simulation was carried out to study interface interactions of NTO-based PBXs, in which hydroxy-terminated polybutadiene (HTPB), ethylene-vinyl acetate copolymer (EVA), glycidyl azide polymer (GAP), poly-3-nitratomethyl-3-methyl oxetane (Poly-NIMMO), and ester urethane (Estane5703) are selected as binders. The binding energy analysis indicates that the order of compatibility is NTO/GAP > NTO/Estane5703 > NTO/HTPB > NTO/Poly-NIMMO > NTO/EVA. Radial distribution function analysis results show that the interface interaction is mainly the hydrogen bond between H atoms of NTO and O atoms of Estane5703, HTPB, EVA, and Poly-NIMMO or N atoms of GAP. The values of cohesive energy density verify that the safety is NTO/GAP > NTO/Poly-NIMMO > NTO/HTPB > NTO/EVA > NTO/Estane5703. Mechanical properties results show that GAP and EVA would improve the plasticity of the systems effectively. Furthermore, it can be found that the most favorable interactions occur between the NTO (1 0 0) crystal face and binders.

7.
J Mol Model ; 28(5): 111, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35368209

RESUMO

In order to understand the thermal decomposition characteristics of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF), the thermal decomposition reaction of DNTF at 300-4000 K temperature programmed and constant temperatures of 2000 K, 2500 K, 3000 K, 3500 K, and 4000 K was simulated by ab initio computational molecular dynamics method. The thermal decomposition mechanism of DNTF at different temperatures was analyzed from the aspects of product evolution, cluster, potential energy curve, and reaction path. The analysis of products shows that the initial small molecular products are NO, NO2, CO, CO2, and N2, and the final small molecular products are CO2 and N2. In the early stage, the ring-opening reaction of furoxan in DNTF structure is the main trigger reaction, and the C-C bond is broken at the initial stage of reaction. The carbon chain structure produced by decomposition forms various cluster structures in the form of C-N bond. In addition, it was found that temperature significantly affects the decomposition rate of DNTF, but does not change its initial decomposition path.

8.
J Mol Model ; 27(1): 8, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33392813

RESUMO

CL-20/HMX-solvent interface models were established to understand the effect of DMSO-acetonitrile co-solvent on the formation of CL-20/HMX cocrystal. The molecular dynamics simulations were applied to theoretically investigate the interactions of CL-20/HMX cocrystal surfaces and dimethyl sulfoxide/acetonitrile co-solvents. The binding energies were calculated, and the interaction between solvent molecules and CL-20/HMX cocrystal faces was analyzed. The results show that molecular interactions would be affected by the mole ratios of solvent, and the comparison of the binding energies with different mole ratios revealed that dimethyl sulfoxide/acetonitrile with mole ratio of 1:3 favors the formation of CL-20/HMX cocrystal.

9.
J Mol Model ; 26(9): 245, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820387

RESUMO

Composition B is a melt-cast explosive consisting of mixtures of TNT and RDX. It has many excellent properties, but there are still multiple safety problems when it is used. Therefore, it is of importance to understand the thermal decomposition mechanism of Composition B. In this paper, during the establishment of the supercell model, the mass ratio of TNT to RDX is about 2:3, which accords with the actual proportion of formula of Composition B. Afterward, the thermal decomposition reaction of Composition B is conducted at various temperatures (2000 K, 2500 K, 3000 K, 3500 K, and 4000 K) by using molecular dynamics simulation of ReaxFF/lg. In terms of potential energy (PE) evolution, primary reaction, intermediate product, final product, and clusters, the thermal decomposition mechanism of Composition B is made an analysis. The activation energy of Composition B is 141.8 kJ/mol by fitting the kinetic parameters of the reaction. During the decomposition process of Composition B, the decay rate of RDX is faster than that of TNT, and the decay rates of TNT and RDX is accelerated significantly with the increasing temperature. The higher the temperature, the shorter the time difference between the two to fully decompose. It can be revealed from the result that the initial reaction path of Composition B decomposition is N-NO2 of RDX cleavage to form NO2, followed by the reaction of TNT with NO2 and other molecules. The initial decomposition reaction path of Composition B is the similar at different temperatures. The main products are small molecules (NO2, NO, N2O, H2O, CO2, N2, H2, HNO2, and HNO). Temperature can make a great difference for the structure of clusters. Large clusters in the system will break down into smaller molecules at high temperature.

10.
J Mol Model ; 26(1): 8, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31834533

RESUMO

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) cocrystal is widely concerned due to its high safety and low sensitivity. A CL-20/HMX-solution interface model was constructed to investigate the effect of solvent mixture on cocrystal morphology. The interface models of different solvent mixtures were simulated by molecular dynamics (MD) and quantum chemistry (QC) methods at room temperature. The analyses of binding energy show that CL-20 and HMX molecules are easier to be adsorbed on the cocrystal surface in the presence of solvent mixture dimethyl sulfoxide (DMSO)/acetonitrile (ACN). Mass density distribution and diffusion coefficient analyses demonstrated that the growth of CL-20/HMX cocrystal will be freer in DMSO/ACN. Cooperativity effect analysis shows that the CL-20 binding to HMX is tighter in the presence of DMSO/ACN and the system is more stable. Our findings may provide some guidelines for preparing cocrystal in solvent mixture. Graphical abstract.

11.
J Mol Model ; 24(1): 9, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230541

RESUMO

Eutectic mixtures of 3,4-dinitropyrazole (DNP) and 1-methyl-3,4,5-trinitropyrazole (MTNP) were investigated by theoretical and experimental methods. The mass ratio of DNP and MTNP ranged from 0:100 to 100:0. Melting points of the mixtures were predicted through observing the inflection point of a specific volume vs. temperature in molecular dynamics (MD) simulation. The results are in good agreement with experimental results obtained from the differential scanning calorimeter (DSC) study. The binding energy of a 50/50 DNP/MTNP eutectic mixture is lower than those of other mixtures, in accordance with the common sense that the melting point of materials is linked to the strength of intermolecular interactions. There are definitely hydrogen bonds and dispersion interactions between DNP and MTNP based on the analyses of interaction energy, atom in molecules (AIM), and reduced density gradient (RDG). The eutectic mixture would be encouraged to be used in melt-cast explosives because of the favorable sensitivity to heat and impact, great detonation performances, acceptable vacuum stability and excellent compatibility with high explosives. Graphical abstract The eutectic mixture of DNP and MTNP were investigated through molecular dynamics (MD) simulation and quantum chemistry calculations. The predicted melting points of mixtures are in good agreement with the experimental data. The eutectic mixture shows good stability.

12.
J Mol Model ; 23(12): 360, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29185114

RESUMO

A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model was constructed to investigate the effect of temperature on cocrystal morphology. A constant volume and temperature molecular dynamics (NVT-MD) simulation was performed on the interfacial model at various temperatures (295-355 K, 20 K intervals). The surface electrostatic potential (ESP) of the CL-20/HMX cocrystal structure and IPA molecule were studied by the B3LYP method at 6-311++G (d, p) level. The surface energies, polarities, adsorption energy, mass density distribution, radial distribution function (RDF), mean square displacement (MSD) and relative changes of attachment energy were analyzed. The results show that polarities of (1 0 0) and (0 1 1) cocrystal surfaces may be more negative and affected by IPA solvent. The adsorption energy per area indicates that growth of the (1 0-2) face in IPA conditions may be more limited, while the (1 0 0) face tends to grow more freely. MSD and diffusion coefficient (D) analyses demonstrated that IPA molecules gather more easily on the cocrystal surface at lower temperatures, and hence have a larger effect on the growth of cocrystal faces. RDF analysis shows that, with the increasing of temperature, the strength of hydrogen bond interactions between cocrystal and solvent becomes stronger, being highest at 335 K for the (1 0 0) and (0 1 1) interfacial models. Results of relative changes of modified attachment energy show that (1 0 0) and (0 1 1) faces tends to be larger than other faces. Moreover, the predicted morphologies at 295 and 355 K are consistent with experimental values, proving that the CL-20/HMX-IPA interfacial model is a reasonable one for this study. Graphical Abstract Construction of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model, analysis, and morphology prediction of cocrystal.

13.
J Mol Model ; 23(12): 353, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29177847

RESUMO

The effects of the molar ratio, temperature, and solvent on the formation of the cocrystal explosive DNP/CL-20 were investigated using molecular dynamics (MD) simulation. The cocrystal structure was predicted through Monte Carlo (MC) simulation and using first-principles methods. The results showed that the DNP/CL-20 cocrystal might be more stable in the molar ratio 1:1 near to 318 K, and the most probable cocrystal crystallizes in the triclinic crystal system with the space group P[Formula: see text]. Cocrystallization was more likely to occur in methanol and ethanol at 308 K as a result of solvent effects. The optimized structure and the reduced density gradient (RDG) of the DNP/CL-20 complex confirmed that the main driving forces for cocrystallization were a series of hydrogen bonds and van der Waals forces. Analyses of the trigger bonds, the charges on the nitro groups, the electrostatic surface potential (ESP), and the free space per molecule in the cocrystal lattice were carried out to further explore their influences on the sensitivity of CL-20. The results indicated that the DNP/CL-20 complex tended to be more stable and insensitive than pure CL-20. Moreover, an investigation of the detonation performance of the DNP/CL-20 cocrystal indicated that it possesses high power. Graphical abstract DNP/CL-20 cocrystal models with different molar ratios were investigated at different temperatures using molecular dynamics (MD) simulation methods. Binding energies and mechanical properties were probed to determine the stability and performance of each cocrystal model. Solvated DNP/CL-20 models were established by adding solvent molecules to the cocrystal surface. The binding energies of the models in various solvents were calculated in order to identify the most suitable solvent and temperature for preparing the cocrystal explosive DNP/CL-20.

14.
J Mol Model ; 22(6): 123, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27168198

RESUMO

Molecular dynamics method was employed to study the binding energies on the selected crystal planes of the ε-, γ-, ß-conformation 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-, γ-, ß-CL-20) cocrystal explosives with 1,1-diamino-2,2-dinitroethylene (FOX-7), 1,3,5,7-tetranitro- 1,3,5,7-tetrazacyclooctane with ß-conformation (ß-HMX) and N,N-dimethylformamide (DMF) in different molar ratios. The oxygen balance, density, detonation velocity, detonation pressure, and surface electrostatic potential were analyzed. The results indicate that the binding energies E b (*) and stabilities are in the order of 1:1 > 2:1 > 3:1 > 5:1 > 8:1 (CL-20:FOX-7/ß-HMX/DMF). The values of E b (*) and stabilities of the energetic-nonenergetic CL-20/DMF cocrystals are far larger than those of the energetic-energetic CL-20/FOX-7 and CL-20/ß-HMX, and those of CL-20/ß-HMX are the smallest. For CL-20/FOX-7 and CL-20/ß-HMX, the largest E b (*) appears in the cocrystals with the 1:1, 1:2 or 1:3 molar ratio, and the stabilities of the cocrystals with the excess ratio of CL-20 are weaker than those in the cocrystals with the excess ratio of FOX-7 or ß-HMX. In CL-20/FOX-7, CL-20 prefers adopting the γ-form, and ε-CL-20 is the preference in CL-20/ß-HMX, and ε-CL-20 and ß-CL-20 can be found in CL-20/DMF. The CL-20/FOX-7 and CL-20/ß-HMX cocrystals with low molar ratios can meet the requirements of low sensitive high energetic materials. Surface electrostatic potential reveals the nature of the sensitivity change upon the cocrystal formation. Graphical Abstract MD method was employed to study the binding energies on the selected crystal planes in the ε-, γ-, ß-CL-20 cocrystals with FOX-7, ß-HMX and DMF in different molar ratios. Surface electrostatic potential reveals the nature of the sensitivity change in cocrystals.

15.
J Mol Model ; 22(5): 108, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27094730

RESUMO

Multilayer-shaped compression and slide models were employed to investigate the complex sensitive mechanisms of cocrystal explosives in response to external mechanical stimuli. Here, density functional theory (DFT) calculations implementing the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) with the Tkatchenko-Scheffler (TS) dispersion correction were applied to a series of cocrystal explosives: diacetone diperoxide (DADP)/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB) and DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). The results show that the GGA-PBE-TS method is suitable for calculating these cocrystal systems. Compression and slide models illustrate well the sensitive mechanism of layer-shaped cocrystals of DADP/TCTNB and DADP/TITNB, in accordance with the results from electrostatic potentials and free space per molecule in cocrystal lattice analyses. DADP/TCTNB and DADP/TBTNB prefer sliding along a diagonal direction on the a-c face and generating strong intermolecular repulsions, compared to DADP/TITNB, which slides parallel to the b-c face. The impact sensitivity of DADP/TBTNB is predicted to be the same as that of DADP/TCTNB, and the impact sensitivity of DADP/TBTNB may be slightly more insensitive than that of DADP and much more sensitive than that of TBTNB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA