Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 165: 112389, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729511

RESUMO

In this study, we investigated the biophysical interaction between cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and CD80. CTLA-4 is a key molecule in immunosuppression, and CD80 is a costimulatory receptor promoting T cell activation. We observed that after cell-cell contact was established between breast cancer cells and antigen presenting cells (APCs), CTLA-4 expressed on the breast cancer cells bind to CD80 expressed on the APCs, and underwent trans-endocytosis to deplete CD80. Force measurement and live cell imaging revealed that upon binding to CD80, forces generated by breast cancer cells and transmitted via CTLA-4 were sufficiently strong to displace CD80 from the surface of APCs to be internalized by breast cancer cells. We further demonstrated that because of the force-dependent trans-endocytosis of CD80, the capacity of APCs to activate T cells was significantly attenuated. Furthermore, inhibiting force generation in cancer cells would increase the T cell activating capacity of APCs. Our results provide a possible mechanism behind the immunosuppression commonly seen in breast cancer patients, and may lead to a new strategy to restore anti-tumor immunity by inhibiting pathways of force-generation.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Antígeno B7-2 , Antígenos CD28 , Endocitose , Humanos , Ativação Linfocitária , Linfócitos T
2.
Lasers Med Sci ; 35(7): 1589-1597, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32277406

RESUMO

Laser therapy has been widely used to treat port-wine stain (PWS) and other cutaneous vascular lesions via selective photothermolysis. High incident laser fluence is always prohibited in clinic to prevent the thermal damage in normal skin tissue, leading to insufficient energy deposition on the target blood vessel and incomplete clearance of PWS lesion. In this study, repeated multipulse laser (RMPL) irradiation was proposed to induce acute thermal damage to target blood vessels with low incident fluence (40 J/cm2 for 1064-nm Nd:YAG laser). The feasibility of the method was investigated using animal models. Repeated multipulse irradiation cycles with 10-min intervals were performed in RMPL. A hamster dorsal skin chamber model with a visualization system was constructed to investigate the instant generation of thermal coagulum and relevant hemostasis by thrombus formation during and after irradiation under 1064 nm Nd:YAG single multipulse laser (SMPL) and RMPL irradiation. The diameter of the target blood vessel and the size of thermal coagula were measured before and after laser irradiation. The reflectance spectra of the dorsal skin were measured by a reflectance spectrometer during RMPL. Stasis thermal coagula that clogged the vessel lumen were generated during SMPL irradiation with low incident fluence. However, there was no acute thermal damage of blood vessels. Reflectance spectra measurement showed that the generation of thermal coagula and subsequent thrombus formation increases blood absorption by more than 10% within the first 10 min after laser irradiation. Acute vessel thermal damage could be induced in the target blood vessel by RMPL with low incident fluence of 40 J/cm2. Compared with our previous SMPL study, nearly 30% reduction in incident laser fluence was achieved by RMPL. Low fluence RMPL may be a promising approach to improve the therapeutic outcome for patients with cutaneous vascular lesions by improving energy deposition on the target blood vessel.


Assuntos
Vasos Sanguíneos/efeitos da radiação , Hemostasia/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Pele/irrigação sanguínea , Pele/efeitos da radiação , Temperatura , Animais , Cricetinae , Feminino , Humanos , Camundongos , Mancha Vinho do Porto/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA