Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096164

RESUMO

INTRODUCTION: We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS: We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS: P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION: Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS: We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.

2.
Neurology ; 101(5): e533-e545, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290971

RESUMO

BACKGROUND AND OBJECTIVES: Excessive activation of certain lipid mediator (LM) pathways plays a role in the complex pathogenesis of multiple sclerosis (MS). However, the relationship between bioactive LMs and different aspects of CNS-related pathophysiologic processes remains largely unknown. Therefore, in this study, we assessed the association of bioactive LMs belonging to the ω-3/ω-6 lipid classes with clinical and biochemical (serum neurofilament light [sNfL] and serum glial fibrillary acidic protein [sGFAP]) parameters and MRI-based brain volumes in patients with MS (PwMS) and healthy controls (HCs). METHODS: A targeted high-performance liquid chromatography-tandem mass spectrometry approach was used on plasma samples of PwMS and HCs of the Project Y cohort, a cross-sectional population-based cohort that contains PwMS all born in 1966 in the Netherlands and age-matched HCs. LMs were compared between PwMS and HCs and were correlated with levels of sNfL, sGFAP, disability (Expanded Disability Status Scale [EDSS]), and brain volumes. Finally, significant correlates were included in a backward multivariate regression model to identify which LMs best related to disability. RESULTS: The study sample consisted of 170 patients with relapsing remitting MS (RRMS), 115 patients with progressive MS (PMS), and 125 HCs. LM profiles of patients with PMS significantly differed from those of patients with RRMS and HCs, particularly patients with PMS showed elevated levels of several arachidonic acid (AA) derivatives. In particular, 15-hydroxyeicosatetraenoic acid (HETE) (r = 0.24, p < 0.001) correlated (average r = 0.2, p < 0.05) with clinical and biochemical parameters such as EDSS and sNfL. In addition, higher 15-HETE levels were related to lower total brain (r = -0.24, p = 0.04) and deep gray matter volumes (r = -0.27, p = 0.02) in patients with PMS and higher lesion volume (r = 0.15, p = 0.03) in all PwMS. DISCUSSION: In PwMS of the same birth year, we show that ω-3 and ω-6 LMs are associated with disability, biochemical parameters (sNfL, GFAP), and MRI measures. Furthermore, our findings indicate that, particularly, in patients with PMS, elevated levels of specific products of the AA pathway, such as 15-HETE, associate with neurodegenerative processes. Our findings highlight the potential relevance of ω-6 LMs in the pathogenesis of MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Ácido Araquidônico , Estudos Transversais , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Gravidade do Paciente
3.
J Nucl Med ; 64(3): 437-443, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36229187

RESUMO

Both plasma tau phosphorylated at threonine-181 (pTau181) and tau PET show potential for detecting Alzheimer's disease (AD) pathology and predicting clinical progression. In this study, we performed a head-to-head comparison between plasma pTau181 and tau PET along the AD continuum. Methods: We included participants from the Amsterdam Dementia Cohort who underwent 18F-flortaucipir (tau) PET and had a plasma sample biobanked within 12 mo from tau PET. Fifty subjective cognitive decline (SCD) participants (31 Aß-negative and 19 Aß-positive) and 60 Aß-positive participants with mild cognitive impairment (MCI) or dementia due to AD were included. A subset had 2-y longitudinal plasma pTau181 and tau PET available (n = 40). Longitudinal neuropsychological test data covering 3.2 ± 2.7 y from both before and after tau PET were available. Plasma pTau181 and tau PET were compared in their accuracies in discriminating between cognitive stage (MCI/AD vs. SCD) and preclinical Aß status (SCD Aß-positive vs. SCD Aß-negative), their associations with cross-sectional and longitudinal neuropsychological test performance, and their longitudinal changes over time. Results: When discriminating between preclinical Aß status, the area under the curve (AUC) for plasma pTau181 (0.83) and tau PET (entorhinal, 0.87; temporal, 0.85; neocortical, 0.67) were equally high (all DeLong P > 0.05), but tau PET outperformed plasma pTau181 in discriminating MCI/AD from SCD (AUC for plasma pTau181: 0.74; AUCs for tau PET: entorhinal, 0.89; temporal, 0.92; neocortical, 0.89) (all P < 0.01). Overall, tau PET showed stronger associations with cognitive decline and was associated with a wider variety of cognitive tests than plasma pTau181 (plasma pTau181, -0.02 > ß < -0.12; tau PET, -0.01 > ß < -0.22). Both plasma pTau181 and tau PET increased more steeply over time in MCI/AD than in SCD (P < 0.05), but only tau PET annual changes were associated with cognitive decline. Conclusion: Our results suggest that plasma pTau181 and tau PET perform equally well in identifying Aß pathology but that tau PET better monitors disease stage and clinical progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Proteínas tau , Estudos Transversais , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Biomarcadores
4.
Biosensors (Basel) ; 12(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35323451

RESUMO

Microfluidics has become a popular method for constructing nanosystems in recent years, but it can also be used to coat other materials with polymeric layers. The polymeric coating may serve as a diffusion barrier against hydrophilic compounds, a responsive layer for controlled release, or a functional layer introduced to a nanocomposite for achieving the desired surface chemistry. In this study, mesoporous silica nanoparticles (MSNs) with enlarged pores were synthesized to achieve high protein loading combined with high protein retention within the MSN system with the aid of a microfluidic coating. Thus, MSNs were first coated with a cationic polyelectrolyte, poly (diallyldimethylammonium chloride) (PDDMA), and to potentially further control the protein release, a second coating of a pH-sensitive polymer (spermine-modified acetylated dextran, SpAcDEX) was deposited by a designed microfluidic device. The protective PDDMA layer was first formed under aqueous conditions, whereby the bioactivity of the protein could be maintained. The second coating polymer, SpAcDEX, was preferred to provide pH-sensitive protein release in the intracellular environment. The optimized formulation was effectively taken up by the cells along with the loaded protein cargo. This proof-of-concept study thus demonstrated that the use of microfluidic technologies for the design of protein delivery systems has great potential in terms of creating multicomponent systems and preserving protein stability.


Assuntos
Nanopartículas , Dióxido de Silício , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Microfluídica , Nanopartículas/química , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA