Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sports Med Open ; 9(1): 65, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523028

RESUMO

BACKGROUND: Research has shown that ingesting 0.3 g·kg-1 body mass sodium bicarbonate (NaHCO3) can improve time-to-exhaustion (TTE) cycling performance, but the influence of psychophysiological mechanisms on ergogenic effects is not yet understood. OBJECTIVE: This study retrospectively examined whether changes in TTE cycling performance are mediated by positive expectations of receiving NaHCO3 and/or the decline in blood bicarbonate during exercise. METHODS: In a randomised, crossover, counterbalanced, double-blind, placebo-controlled design, 12 recreationally trained cyclists (maximal oxygen consumption, 54.4 ± 5.7 mL·kg·min-1) performed four TTE cycling tests 90 min after consuming: (1) 0.3 g·kg-1 body mass NaHCO3 in 5 mL·kg-1 body mass solution, (2) 0.03 g·kg-1 body mass sodium chloride in solution (placebo), (3) 0.3 g·kg-1 body mass NaHCO3 in capsules and (4) cornflour in capsules (placebo). Prior to exercise, participants rated on 1-5 Likert type scales how much they expected the treatment they believe had been given would improve performance. Capillary blood samples were measured for acid-base balance at baseline, pre-exercise and post-exercise. RESULTS: Administering NaHCO3 in solution and capsules improved TTE compared with their respective placebos (solution: 27.0 ± 21.9 s, p = 0.001; capsules: 23.0 ± 28.1 s, p = 0.016). Compared to capsules, NaHCO3 administered via solution resulted in a higher expectancy about the benefits on TTE cycling performance (Median: 3.5 vs. 2.5, Z = 2.135, p = 0.033). Decline in blood bicarbonate during exercise was higher for NaHCO3 given in solution compared to capsules (2.7 ± 2.1 mmol·L-1, p = 0.001). Mediation analyses showed that improvements in TTE cycling were indirectly related to expectancy and decline in blood bicarbonate when NaHCO3 was administered in solution but not capsules. CONCLUSIONS: Participants' higher expectations when NaHCO3 is administered in solution could result in them exerting themselves harder during TTE cycling, which subsequently leads to a greater decline in blood bicarbonate and larger improvements in performance. KEY POINTS: Ingesting 0.3 g·kg-1 body mass sodium bicarbonate in solution and capsules improved time-to-exhaustion cycling performance Positive expectancy about the benefits of sodium bicarbonate and decline in blood bicarbonate were higher when sodium bicarbonate was administered in solution compared with capsules Improvements in time-to-exhaustion cycling performance for sodium bicarbonate administered in solution were related to expectancy and the enhanced extracellular buffering response.

2.
Sports Med Open ; 5(1): 4, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30680463

RESUMO

BACKGROUND: Sodium bicarbonate (NaHCO3) is a well-established nutritional ergogenic aid, though gastrointestinal (GI) distress is a common side-effect. Delayed-release NaHCO3 may alleviate GI symptoms and enhance bicarbonate bioavailability following oral ingestion, although this has yet to be confirmed. METHODS: In a randomised crossover design, pharmacokinetic responses and acid-base status were compared following two forms of NaHCO3, as were GI symptoms. Twelve trained healthy males (mean ± SD age 25.8 ± 4.5 years, maximal oxygen uptake ([Formula: see text]) 58.9 ± 10.9 mL kg min-1, height 1.8 ± 0.1 m, body mass 82.3 ± 11.1 kg, fat-free mass 72.3 ± 10.0 kg) underwent a control (CON) condition and two experimental conditions: 300 mg kg-1 body mass NaHCO3 ingested as an aqueous solution (SOL) and encased in delayed-release capsules (CAP). Blood bicarbonate concentration, pH and base excess (BE) were measured in all conditions over 180 min, as were subjective GI symptom scores. RESULTS: Incidences of GI symptoms and overall severity were significantly lower (mean difference = 45.1%, P < 0.0005 and 47.5%, P < 0.0005 for incidences and severity, respectively) with the CAP than with the SOL. Symptoms displayed increases at 40 to 80 min post-ingestion with the SOL that were negated with CAP (P < 0.05). Time to reach peak bicarbonate concentration, pH and BE were significantly longer with CAP than with the SOL. CONCLUSIONS: In summary, CAP can mitigate GI symptoms induced with SOL and should be ingested earlier to induce similar acid-base changes. Furthermore, CAP may be more ergogenic in those who experience severe GI distress with SOL, although this warrants further investigation.

3.
Eur J Appl Physiol ; 118(12): 2489-2498, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30196448

RESUMO

PURPOSE: Exacerbated hydrogen cation (H+) production is suggested to be a key determinant of fatigue in acute hypoxic conditions. This study, therefore, investigated the effects of NaHCO3 ingestion on repeated 4 km TT cycling performance and post-exercise acid-base balance recovery in acute moderate hypoxic conditions. METHODS: Ten male trained cyclists completed four repeats of 2 × 4 km cycling time trials (TT1 and TT2) with 40 min passive recovery, each on different days. Each TT series was preceded by supplementation of one of the 0.2 g kg-1 BM NaHCO3 (SBC2), 0.3 g kg-1 BM NaHCO3 (SBC3), or a taste-matched placebo (0.07 g kg-1 BM sodium chloride; PLA), administered in a randomized order. Supplements were administered at a pre-determined individual time to peak capillary blood bicarbonate concentration ([HCO3-]). Each TT series was also completed in a normobaric hypoxic chamber set at 14.5% FiO2 (~ 3000 m). RESULTS: Performance was improved following SBC3 in both TT1 (400.2 ± 24.1 vs. 405.9 ± 26.0 s; p = 0.03) and TT2 (407.2 ± 29.2 vs. 413.2 ± 30.8 s; p = 0.01) compared to PLA, displaying a very likely benefit in each bout. Compared to SBC2, a likely and possible benefit was also observed following SBC3 in TT1 (402.3 ± 26.5 s; p = 0.15) and TT2 (410.3 ± 30.8 s; p = 0.44), respectively. One participant displayed an ergolytic effect following SBC3, likely because of severe gastrointestinal discomfort, as SBC2 still provided ergogenic effects. CONCLUSION: NaHCO3 ingestion improves repeated exercise performance in acute hypoxic conditions, although the optimal dose is likely to be 0.3 g kg-1 BM.


Assuntos
Alcalose/fisiopatologia , Tolerância ao Exercício , Treinamento Intervalado de Alta Intensidade , Hipóxia/fisiopatologia , Equilíbrio Ácido-Base , Adulto , Alcalose/tratamento farmacológico , Bicarbonatos/sangue , Carbonatos/administração & dosagem , Carbonatos/uso terapêutico , Humanos , Masculino , Distribuição Aleatória
4.
Sports Med Open ; 3(1): 34, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28936625

RESUMO

BACKGROUND: Individual time to peak blood bicarbonate (HCO3-) has demonstrated good to excellent reproducibility following ingestion of both 0.2 g kg-1 body mass (BM) and 0.3 g kg-1 BM sodium bicarbonate (NaHCO3), but the consistency of the time trial (TT) performance response using such an individualised NaHCO3 ingestion strategy remains unknown. This study therefore evaluated the reproducibility of 4-km TT performance following NaHCO3 ingestion individualised to time to peak blood bicarbonate. METHODS: Eleven trained male cyclists completed five randomised treatments with prior ingestion of 0.2 g kg-1 (SBC2) or 0.3 g kg-1 BM (SBC3) NaHCO3, on two separate occasions each, or a control trial entailing no supplementation. Participants completed a 4-km cycling TT on a Velotron ergometer where time to complete, power and speed were measured, whilst acid-base blood parameters were also recorded (pH and blood bicarbonate concentration HCO3-) and lactate [La-]. RESULTS: Alkalosis was achieved prior to exercise in both SBC2 and SBC3, as pH and HCO3- were greater compared to baseline (p < 0.001), with no differences between treatments (p > 0.05). The reproducibility of the mean absolute change from baseline to peak in HCO3- was good in SBC2 (r = 0.68) and excellent in SBC3 (r = 0.78). The performance responses following both SBC2 and SBC3 displayed excellent reproducibility (r range = 0.97 to 0.99). CONCLUSIONS: Results demonstrate excellent reproducibility of exercise performance following individualised NaHCO3 ingestion, which is due to the high reproducibility of blood acid-base variables with repeat administration of NaHCO3. Using a time to peak HCO3- strategy seems to cause no dose-dependent effects on performance for exercise of this duration and intensity; therefore, athletes may consider smaller doses of NaHCO3 to mitigate gastrointestinal (GI) discomfort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA