Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627854

RESUMO

We designed a photo-ECMO device to speed up the rate of carbon monoxide (CO) removal by using visible light to dissociate CO from hemoglobin (Hb). Using computational fluid dynamics, fillets of different radii (5 cm and 10 cm) were applied to the square shape of a photo-ECMO device to reduce stagnant blood flow regions and increase the treated blood volume while being constrained by full light penetration. The blood flow at different flow rates and the thermal load imposed by forty external light sources at 623 nm were modeled using the Navier-Stokes and convection-diffusion equations. The particle residence times were also analyzed to determine the time the blood remained in the device. There was a reduction in the blood flow stagnation as the fillet radii increased. The maximum temperature change for all the geometries was below 4 °C. The optimized device with a fillet radius of 5 cm and a blood priming volume of up to 208 cm3 should decrease the time needed to treat CO poisoning without exceeding the critical threshold for protein denaturation. This technology has the potential to decrease the time for CO removal when treating patients with CO poisoning and pulmonary gas exchange inhibition.

2.
Lasers Surg Med ; 55(4): 390-404, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36883985

RESUMO

BACKGROUND: Extracorporeal membrane oxygenators (ECMO) are currently utilized to mechanically ventilate blood when lung or lung and heart function are impaired, like in cases of acute respiratory distress syndrome (ARDS). ARDS can be caused by severe cases of carbon monoxide (CO) inhalation, which is the leading cause of poison-related deaths in the United States. ECMOs can be further optimized for severe CO inhalation using visible light to photo-dissociate CO from hemoglobin (Hb). In previous studies, we combined phototherapy with an ECMO to design a photo-ECMO device, which significantly increased CO elimination and improved survival in CO-poisoned animal models using light at 460, 523, and 620 nm wavelengths. Light at 620 nm was the most effective in removing CO. OBJECTIVE: The aim of this study is to analyze the light propagation at 460, 523, and 620 nm wavelengths and the 3D blood flow and heating distribution within the photo-ECMO device that increased CO elimination in CO-poisoned animal models. METHODS: Light propagation, blood flow dynamics, and heat diffusion were modeled using the Monte Carlo method and the laminar Navier-Stokes and heat diffusion equations, respectively. RESULTS: Light at 620 nm propagated through the device blood compartment (4 mm), while light at 460 and 523 nm only penetrated 48% to 50% (~2 mm). The blood flow velocity in the blood compartment varied with regions of high (5 mm/s) and low (1 mm/s) velocity, including stagnant flow. The blood temperatures at the device outlet for 460, 523, and 620 nm wavelengths were approximately 26.7°C, 27.4°C, and 20°C, respectively. However, the maximum temperatures within the blood treatment compartment rose to approximately 71°C, 77°C, and 21°C, respectively. CONCLUSIONS: As the extent of light propagation correlates with efficiency in photodissociation, the light at 620 nm is the optimal wavelength for removing CO from Hb while maintaining blood temperatures below thermal damage. Measuring the inlet and outlet blood temperatures is not enough to avoid unintentional thermal damage by light irradiation. Computational models can help eliminate risks of excessive heating and improve device development by analyzing design modifications that improve blood flow, like suppressing stagnant flow, further increasing the rate of CO elimination.


Assuntos
Intoxicação por Monóxido de Carbono , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Animais , Intoxicação por Monóxido de Carbono/terapia , Oxigenadores de Membrana , Oxigenação por Membrana Extracorpórea/métodos , Fototerapia/métodos , Síndrome do Desconforto Respiratório/terapia
3.
ACS Biomater Sci Eng ; 9(1): 409-426, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469567

RESUMO

Homogeneous vascularization of implanted tissue constructs can extend to 5 weeks, during which cell death can occur due to inadequate availability of oxygen. Researchers are engineering biomaterials that generate and release oxygen in a regulated manner, in an effort to overcome this hurdle. A main limitation of the existing oxygen-generating biomaterials is the uncontrolled release of oxygen, which is ultimately detrimental to the cells. This study demonstrates the incorporation of calcium peroxide (CaO2) within a hydrophobic polymer, polycaprolactone (PCL), to yield composite scaffolds with controlled oxygen release kinetics sustained over 5 weeks. Oxygen-generating microparticles coencapsulated with cardiomyocytes in a gelatin-based hydrogel matrix can serve as model systems for cardiac tissue engineering. Specifically, the results reveal that the oxygen-generating microspheres significantly improve the scaffold mechanical strength ranging from 5 kPa to 35 kPa, have an average scaffold pore size of 50-100 µm, swelling ratios of 33.3-29.8%, and degradation with 10-49% remaining mass at the end of a 48 h accelerated enzymatic degradation. The oxygen-generating scaffolds demonstrate improvement in cell viability, proliferation, and metabolic activity compared to the negative control group when cultured under hypoxia. Additionally, the optimized oxygen-generating constructs display no cytotoxicity or apoptosis. These oxygen-generating scaffolds can possibly assist the in vivo translation of cardiac tissue constructs.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Oxigênio/química , Materiais Biocompatíveis , Polímeros
4.
Bioact Mater ; 13: 64-81, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224292

RESUMO

Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO2) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8-9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm3 bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.

5.
Biomater Sci ; 9(7): 2519-2532, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33565527

RESUMO

Oxygen supply is essential for the long-term viability and function of tissue engineered constructs in vitro and in vivo. The integration with the host blood supply as the primary source of oxygen to cells requires 4 to 5 weeks in vivo and involves neovascularization stages to support the delivery of oxygenated blood to cells. Consequently, three-dimensional (3D) encapsulated cells during this process are prone to oxygen deprivation, cellular dysfunction, damage, and hypoxia-induced necrosis. Here we demonstrate the use of calcium peroxide (CaO2) and polycaprolactone (PCL), as part of an emerging paradigm of oxygen-generating scaffolds that substitute the host oxygen supply via hydrolytic degradation. The 35-day in vitro study showed predictable oxygen release kinetics that achieved 5% to 29% dissolved oxygen with increasing CaO2 loading. As a biomaterial, the iterations of 0 mg, 40 mg, and 60 mg of CaO2 loaded scaffolds yielded modular mechanical behaviors, ranging from 5-20 kPa in compressive strength. The other controlled physiochemical features included swelling capacities of 22-33% and enzymatic degradation rates of 0.8% to 60% remaining mass. The 3D-encapsulation experiments of NIH/3T3 fibroblasts, L6 rat myoblasts, and primary cardiac fibroblasts in these scaffolds showed enhanced cell survival, proliferation, and function under hypoxia. During continuous oxygen release, the scaffolds maintained a stable tissue culture system between pH 8 to 9. The broad basis of this work supports prospects in the expansion of robust and clinically translatable tissue constructs.


Assuntos
Oxigênio , Alicerces Teciduais , Animais , Peróxidos , Poliésteres , Ratos , Engenharia Tecidual , Sobrevivência de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA