Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 921, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297003

RESUMO

A key goal of pertussis control is to protect infants too young to be vaccinated, the age group most vulnerable to this highly contagious respiratory infection. In the last decade, maternal immunization has been deployed in many countries, successfully reducing pertussis in this age group. Because of immunological blunting, however, this strategy may erode the effectiveness of primary vaccination at later ages. Here, we systematically reviewed the literature on the relative risk (RR) of pertussis after primary immunization of infants born to vaccinated vs. unvaccinated mothers. The four studies identified had ≤6 years of follow-up and large statistical uncertainty (meta-analysis weighted mean RR: 0.71, 95% CI: 0.38-1.32). To interpret this evidence, we designed a new mathematical model with explicit blunting mechanisms and evaluated maternal immunization's short- and long-term impact on pertussis transmission dynamics. We show that transient dynamics can mask blunting for at least a decade after rolling out maternal immunization. Hence, the current epidemiological evidence may be insufficient to rule out modest reductions in the effectiveness of primary vaccination. Irrespective of this potential collateral cost, we predict that maternal immunization will remain effective at protecting unvaccinated newborns, supporting current public health recommendations.


Assuntos
Infecções Respiratórias , Vacinas , Coqueluche , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Coqueluche/epidemiologia , Coqueluche/prevenção & controle , Vacinação , Parto , Imunização
2.
J Infect Dis ; 228(6): 674-683, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384795

RESUMO

BACKGROUND: Varicella causes a major health burden in many low- to middle-income countries located in tropical regions. Because of the lack of surveillance data, however, the epidemiology of varicella in these regions remains uncharacterized. In this study, based on an extensive dataset of weekly varicella incidence in children ≤10 during 2011-2014 in 25 municipalities, we aimed to delineate the seasonality of varicella across the diverse tropical climates of Colombia. METHODS: We used generalized additive models to estimate varicella seasonality, and we used clustering and matrix correlation methods to assess its correlation with climate. Furthermore, we developed a mathematical model to examine whether including the effect of climate on varicella transmission could reproduce the observed spatiotemporal patterns. RESULTS: Varicella seasonality was markedly bimodal, with latitudinal changes in the peaks' timing and amplitude. This spatial gradient strongly correlated with specific humidity (Mantel statistic = 0.412, P = .001) but not temperature (Mantel statistic = 0.077, P = .225). The mathematical model reproduced the observed patterns not only in Colombia but also México, and it predicted a latitudinal gradient in Central America. CONCLUSIONS: These results demonstrate large variability in varicella seasonality across Colombia and suggest that spatiotemporal humidity fluctuations can explain the calendar of varicella epidemics in Colombia, México, and potentially in Central America.


Assuntos
Varicela , Criança , Humanos , Varicela/epidemiologia , Colômbia/epidemiologia , Clima , Herpesvirus Humano 3 , Umidade , Estações do Ano , Clima Tropical
3.
PLoS Pathog ; 19(3): e1011167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36888684

RESUMO

Despite the availability of effective vaccines, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that cocirculation with other pathogens and resulting multiepidemics (of, for example, COVID-19 and influenza) may become increasingly frequent. To better forecast and control the risk of such multiepidemics, it is essential to elucidate the potential interactions of SARS-CoV-2 with other pathogens; these interactions, however, remain poorly defined. Here, we aimed to review the current body of evidence about SARS-CoV-2 interactions. Our review is structured in four parts. To study pathogen interactions in a systematic and comprehensive way, we first developed a general framework to capture their major components: sign (either negative for antagonistic interactions or positive for synergistic interactions), strength (i.e., magnitude of the interaction), symmetry (describing whether the interaction depends on the order of infection of interacting pathogens), duration (describing whether the interaction is short-lived or long-lived), and mechanism (e.g., whether interaction modifies susceptibility to infection, transmissibility of infection, or severity of disease). Second, we reviewed the experimental evidence from animal models about SARS-CoV-2 interactions. Of the 14 studies identified, 11 focused on the outcomes of coinfection with nonattenuated influenza A viruses (IAVs), and 3 with other pathogens. The 11 studies on IAV used different designs and animal models (ferrets, hamsters, and mice) but generally demonstrated that coinfection increased disease severity compared with either monoinfection. By contrast, the effect of coinfection on the viral load of either virus was variable and inconsistent across studies. Third, we reviewed the epidemiological evidence about SARS-CoV-2 interactions in human populations. Although numerous studies were identified, only a few were specifically designed to infer interaction, and many were prone to multiple biases, including confounding. Nevertheless, their results suggested that influenza and pneumococcal conjugate vaccinations were associated with a reduced risk of SARS-CoV-2 infection. Finally, fourth, we formulated simple transmission models of SARS-CoV-2 cocirculation with an epidemic viral pathogen or an endemic bacterial pathogen, showing how they can naturally incorporate the proposed framework. More generally, we argue that such models, when designed with an integrative and multidisciplinary perspective, will be invaluable tools to resolve the substantial uncertainties that remain about SARS-CoV-2 interactions.


Assuntos
COVID-19 , Coinfecção , Influenza Humana , Humanos , Animais , Camundongos , SARS-CoV-2 , Influenza Humana/epidemiologia , Coinfecção/epidemiologia , Furões
4.
Sci Rep ; 12(1): 584, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022445

RESUMO

In the absence of an effective vaccine or drug therapy, non-pharmaceutical interventions are the only option for control of the outbreak of the coronavirus disease 2019, a pandemic with global implications. Each of the over 200 countries affected has followed its own path in dealing with the crisis, making it difficult to evaluate the effectiveness of measures implemented, either individually, or collectively. In this paper we analyse the case of the south Indian state of Kerala, which received much attention in the international media for its actions in containing the spread of the disease in the early months of the pandemic, but later succumbed to a second wave. We use a model to study the trajectory of the disease in the state during the first four months of the outbreak. We then use the model for a retrospective analysis of measures taken to combat the spread of the disease, to evaluate their impact. Because of the differences in the trajectory of the outbreak in Kerala, we argue that it is a model worthy of a place in the discussion on how the world might best handle this and other, future, pandemics.


Assuntos
COVID-19/terapia , COVID-19/epidemiologia , Simulação por Computador , Surtos de Doenças , Humanos , Índia/epidemiologia , Modelos Biológicos , Quarentena
5.
Proc Biol Sci ; 289(1966): 20212358, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016540

RESUMO

There is growing experimental evidence that many respiratory viruses-including influenza and SARS-CoV-2-can interact, such that their epidemiological dynamics may not be independent. To assess these interactions, standard statistical tests of independence suggest that the prevalence ratio-defined as the ratio of co-infection prevalence to the product of single-infection prevalences-should equal unity for non-interacting pathogens. As a result, earlier epidemiological studies aimed to estimate the prevalence ratio from co-detection prevalence data, under the assumption that deviations from unity implied interaction. To examine the validity of this assumption, we designed a simulation study that built on a broadly applicable epidemiological model of co-circulation of two emerging or seasonal respiratory viruses. By focusing on the pair influenza-SARS-CoV-2, we first demonstrate that the prevalence ratio systematically underestimates the strength of interaction, and can even misclassify antagonistic or synergistic interactions that persist after clearance of infection. In a global sensitivity analysis, we further identify properties of viral infection-such as a high reproduction number or a short infectious period-that blur the interaction inferred from the prevalence ratio. Altogether, our results suggest that ecological or epidemiological studies based on co-detection prevalence data provide a poor guide to assess interactions among respiratory viruses.


Assuntos
COVID-19 , Coinfecção , Influenza Humana , Coinfecção/epidemiologia , Modelos Epidemiológicos , Humanos , Influenza Humana/epidemiologia , Prevalência , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA