Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(11): 2860-2874, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817436

RESUMO

Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.

2.
Chemistry ; 29(59): e202301720, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515521

RESUMO

In this article, the enrichment of graphene and graphene oxide with free radicals through their functionalization with tyrosine is studied. In contrast with what is commonly observed in the functionalization of graphene with organic species the addition of tyrosine radicals on to the graphene substrate led to a remarkable increase of the aromatic character as indicated by the spectroscopic data. Similar behaviour was observed for the functionalization of graphene oxide. In addition, a brief analysis of the tyrosine functionalized graphene with EPR spectroscopy showed a remarkable enhancement of the spin density that could be useful in spintronics.

3.
Biomolecules ; 13(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37189390

RESUMO

In the field of biocatalysis, the implementation of sustainable processes such as enzyme immobilization or employment of environmentally friendly solvents, like Deep Eutectic Solvents (DESs) are of paramount importance. In this work, tyrosinase was extracted from fresh mushrooms and used in a carrier-free immobilization towards the preparation of both non-magnetic and magnetic cross-linked enzyme aggregates (CLEAs). The prepared biocatalyst was characterized and the biocatalytic and structural traits of free tyrosinase and tyrosinase magnetic CLEAs (mCLEAs) were evaluated in numerous DES aqueous solutions. The results showed that the nature and the concentration of the DESs used as co-solvents significantly affected the catalytic activity and stability of tyrosinase, while the immobilization enhanced the activity of the enzyme in comparison with the non-immobilized enzyme up to 3.6-fold. The biocatalyst retained the 100% of its initial activity after storage at -20 °C for 1 year and the 90% of its activity after 5 repeated cycles. Tyrosinase mCLEAs were further applied in the homogeneous modification of chitosan with caffeic acid in the presence of DES. The biocatalyst demonstrated great ability in the functionalization of chitosan with caffeic acid in the presence of 10% v/v DES [Bet:Gly (1:3)], enhancing the antioxidant activity of the films.


Assuntos
Quitosana , Monofenol Mono-Oxigenase , Solventes/química , Solventes Eutéticos Profundos , Biocatálise , Enzimas Imobilizadas/química , Água , Estabilidade Enzimática
4.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986854

RESUMO

Graphene has been studied thoroughly for its use in biomedical applications over the last decades. A crucial factor for a material to be used in such applications is its biocompatibility. Various factors affect the biocompatibility and toxicity of graphene structures, including lateral size, number of layers, surface functionalization, and way of production. In this work, we tested that the green production of few-layer bio-graphene (bG) enhances its biocompatibility compared to chemical-graphene (cG). When tested against three different cell lines in terms of MTT assays, both materials proved to be well-tolerated at a wide range of doses. However, high doses of cG induce long-term toxicity and have a tendency for apoptosis. Neither bG nor cG induced ROS generation or cell cycle modifications. Finally, both materials affect the expression of inflammatory proteins such as Nrf2, NF-kB and HO-1 but further research is required for a safe result. In conclusion, although there is little to choose between bG and cG, bG's sustainable way of production makes it a much more attractive and promising candidate for biomedical applications.

5.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839082

RESUMO

Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.

6.
Exp Biol Med (Maywood) ; 248(1): 14-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408556

RESUMO

Diabetes mellitus' (DM) prevalence worldwide is estimated to be around 10% and is expected to rise over the next decades. Monitoring blood glucose levels aims to determine whether glucose targets are met to minimize the risk for the development of symptoms related to high or low blood sugar and avoid long-term diabetes complications. Continuous glucose monitoring (CGMs) systems emerged almost two decades ago and have revolutionized the way diabetes is managed. Especially in Type 1 DM, the combination of a CGM with an insulin pump (known as a closed-loop system or artificial pancreas) allows an autonomous regulation of patients' insulin with minimal intervention from the user. However, there is still an unmet need for high accuracy, precision and repeatability of CGMs. Graphene was isolated in 2004 and found immediately fertile ground in various biomedical applications and devices due to its unique combination of properties including its high electrical conductivity. In the last decade, various graphene family nanomaterials have been exploited for the development of enzymatic and non-enzymatic biosensors to determine glucose in biological fluids, such as blood, sweat, and so on. Although great progress has been achieved in the field, several issues need to be addressed for graphene sensors to become a predominant material in the new era of CGMs.


Assuntos
Diabetes Mellitus Tipo 1 , Grafite , Humanos , Glicemia , Hipoglicemiantes , Automonitorização da Glicemia , Insulina , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA