RESUMO
Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD) are characterized by exacerbated motor and risk-related impulsivities, which are associated with decreased cortical activity. In rodents, the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been separately implicated in impulsive behaviors, but studies on the specific role of the mPFC-NAc pathway in these behaviors are limited. Here, we investigated whether heightened impulsive behaviors are associated with reduced mPFC activity in rodents and determined the involvement of the mPFC-NAc pathway in motor and risk-related impulsivities. We used the Roman High- (RHA) and Low-Avoidance (RLA) rat lines, which display divergent phenotypes in impulsivity. To investigate alterations in cortical activity in relation to impulsivity, regional brain glucose metabolism was measured using positron emission tomography and [18F]-fluorodeoxyglucose ([18F]FDG). Using chemogenetics, the activity of the mPFC-NAc pathway was either selectively activated in high-impulsive RHA rats or inhibited in low-impulsive RLA rats, and the effects of these manipulations on motor and risk-related impulsivity were concurrently assessed using the rat gambling task. We showed that basal [18F]FDG uptake was lower in the mPFC and NAc of RHA compared to RLA rats. Activation of the mPFC-NAc pathway in RHA rats reduced motor impulsivity, without affecting risk-related decision-making. Conversely, inhibition of the mPFC-NAc pathway had no effect in RLA rats. Our results suggest that the mPFC-NAc pathway controls motor impulsivity, but has limited involvement in risk-related decision-making in our current model. Our findings suggest that reducing fronto-striatal activity may help attenuate motor impulsivity in patients with impulse control dysregulation.
Assuntos
Tomada de Decisões , Comportamento Impulsivo , Núcleo Accumbens , Córtex Pré-Frontal , Animais , Comportamento Impulsivo/fisiologia , Córtex Pré-Frontal/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratos , Tomada de Decisões/fisiologia , Vias Neurais/fisiologia , Assunção de Riscos , Tomografia por Emissão de Pósitrons , Atividade Motora/fisiologiaRESUMO
BACKGROUND: Impulsive action and risk-related decision-making (RDM) are associated with various psychiatric disorders, including drug abuse. Both behavioral traits have also been linked to reduced frontocortical activity and alterations in dopamine function in the ventral tegmental area (VTA). However, despite direct projections from the medial prefrontal cortex (mPFC) to the VTA, the specific role of the mPFC-to-VTA pathway in controlling impulsive action and RDM remains unexplored. METHODS: We used positron emission tomography with [18F]-fluorodeoxyglucose to evaluate brain metabolic activity in Roman high- (RHA) and low-avoidance (RLA) rats, which exhibit innate differences in impulsive action and RDM. Notably, we used a viral-based double dissociation chemogenetic strategy to isolate, for the first time to our knowledge, the role of the mPFC-to-VTA pathway in controlling these behaviors. We selectively activated the mPFC-to-VTA pathway in RHA rats and inhibited it in RLA rats, assessing the effects on impulsive action and RDM in the rat gambling task. RESULTS: Our results showed that RHA rats displayed higher impulsive action, less optimal decision-making, and lower cortical activity than RLA rats at baseline. Chemogenetic activation of the mPFC-to-VTA pathway reduced impulsive action in RHA rats, whereas chemogenetic inhibition had the opposite effect in RLA rats. However, these manipulations did not affect RDM. Thus, by specifically targeting the mPFC-to-VTA pathway in a phenotype-dependent way, we reverted innate patterns of impulsive action but not RDM. CONCLUSION: Our findings suggest a dissociable role of the mPFC-to-VTA pathway in impulsive action and RDM, highlighting its potential as a target for investigating impulsivity-related disorders.
Assuntos
Tomada de Decisões , Comportamento Impulsivo , Córtex Pré-Frontal , Área Tegmentar Ventral , Animais , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Comportamento Impulsivo/fisiologia , Tomada de Decisões/fisiologia , Tomada de Decisões/efeitos dos fármacos , Masculino , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia , Ratos , Tomografia por Emissão de Pósitrons , Vias Neurais/fisiologia , Fluordesoxiglucose F18 , Assunção de Riscos , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Jogo de Azar/metabolismoRESUMO
Current research indicates that altered dopamine (DA) transmission in the striatum contributes to impulsivity and novelty-seeking, and it may mediate a link concerning a higher susceptibility to drug abuse. Whether increased susceptibility to drug abuse results from a hyperdopaminergic or hypodopaminergic state is still debated. Here, we simultaneously tracked changes in DA D2/3 receptor (D2/3R) availability and amphetamine-(AMPH)-induced DA release in relation to impulsivity and novelty-seeking prior to, and following, cocaine self-administration (SA) in Roman high- (RHA) and low- (RLA) avoidance rats. We found that high-impulsive/high novelty-seeking RHA rats exhibited lower D2/3R availabilities and higher AMPH-induced DA release in the striatum that predicted higher levels of cocaine intake compared with RLAs. Cocaine SA did not alter striatal D2/3R availability or impulsivity in RHA or RLA rats. Critically, cocaine exposure led to a baseline-dependent blunting of stimulated DA release in high-impulsive/high novelty-seeking RHA rats only, and to a baseline-dependent increase in novelty-seeking in low-impulsive/low novelty-seeking RLA rats only. Altogether, we propose that susceptibility to drug abuse results from an innate hyper-responsive DA system, promoting impulsive action and novelty-seeking, and producing stronger initial drug-reinforcing effects that contribute to the initiation and perpetuation of drug use. However, with repeated cocaine use, a tolerance to drug-induced striatal DA elevations develops, leading to a compensatory increase in drug consumption to overcome the reduced reward effects.
Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Transtornos Relacionados ao Uso de Substâncias , Animais , Ratos , Cocaína/farmacologia , Dopamina , Corpo EstriadoRESUMO
Introduction: Motor impulsivity and risk-related impulsive choice have been proposed as vulnerability factors for drug abuse, due to their high prevalence in drug abusers. However, how these two facets of impulsivity are associated to drug abuse remains unclear. Here, we investigated the predictive value of both motor impulsivity and risk-related impulsive choice on characteristics of drug abuse including initiation and maintenance of drug use, motivation for the drug, extinction of drug-seeking behavior following drug discontinuation and, finally, propensity to relapse. Methods: We used the Roman High- (RHA) and Low- Avoidance (RLA) rat lines, which display innate phenotypical differences in motor impulsivity, risk-related impulsive choice, and propensity to self-administer drugs. Individual levels of motor impulsivity and risk-related impulsive choice were measured using the rat Gambling task. Then, rats were allowed to self-administer cocaine (0.3 mg/kg/infusion; 14 days) to evaluate acquisition and maintenance of cocaine self-administration, after which motivation for cocaine was assessed using a progressive ratio schedule of reinforcement. Subsequently, rats were tested for their resistance to extinction, followed by cue-induced and drug-primed reinstatement sessions to evaluate relapse. Finally, we evaluated the effect of the dopamine stabilizer aripiprazole on reinstatement of drug-seeking behaviors. Results: We found that motor impulsivity and risk-related impulsive choice were positively correlated at baseline. Furthermore, innate high levels of motor impulsivity were associated with higher drug use and increased vulnerability to cocaine-primed reinstatement of drug-seeking. However, no relationships were observed between motor impulsivity and the motivation for the drug, extinction or cue-induced reinstatement of drug-seeking. High levels of risk-related impulsive choice were not associated to any aspects of drug abuse measured in our study. Additionally, aripiprazole similarly blocked cocaine-primed reinstatement of drug-seeking in both high- and low-impulsive animals, suggesting that aripiprazole acts as a D2/3R antagonist to prevent relapse independently of the levels of impulsivity and propensity to self-administer drugs. Discussion: Altogether, our study highlights motor impulsivity as an important predictive factor for drug abuse and drug-primed relapse. On the other hand, the involvement of risk-related impulsive choice as a risk factor for drug abuse appears to be limited.
RESUMO
The neurobiological mechanisms underlying compulsive alcohol use, a cardinal feature of alcohol use disorder, remain elusive. The key modulator of motivational processes, dopamine (DA), is suspected to play an important role in this pathology, but its exact role remains to be determined. Here, we found that rats expressing compulsive-like alcohol use, operationalized as punishment-resistant self-administration, showed a decrease in DA levels restricted to the dorsolateral territories of the striatum, the main output structure of the nigrostriatal DA pathway. We then causally demonstrated that chemogenetic-induced selective hypodopaminergia of this pathway resulted in compulsive-like alcohol self-administration in otherwise resilient rats, accompanied by the emergence of alcohol withdrawal-like motivational impairments (i.e., impaired motivation for a natural reinforcer). Finally, the use of the monoamine stabilizer OSU6162, previously reported to correct hypodopaminergic states, transiently decreased compulsive-like alcohol self-administration in vulnerable rats. These results suggest a potential critical role of tonic nigrostriatal hypodopaminergic states in alcohol addiction and provide new insights into our understanding of the neurobiological mechanisms underlying compulsive alcohol use.
Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Ratos , Animais , Alcoolismo/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Etanol/farmacologia , Dopamina/metabolismo , Comportamento CompulsivoRESUMO
A growing body of evidence supports the idea that mitochondrial dysfunction might represent a key feature of Parkinson's disease (PD). Central regulators of energy production, mitochondria, are also involved in several other essential functions such as cell death pathways and neuroinflammation which make them a potential therapeutic target for PD management. Interestingly, recent studies related to PD have reported a neuroprotective effect of targeting mitochondrial pyruvate carrier (MPC) by the insulin sensitizer MSDC-0160. As the sole point of entry of pyruvate into the mitochondrial matrix, MPC plays a crucial role in energetic metabolism which is impacted in PD. This study therefore aimed at providing insights into the mechanisms underlying the neuroprotective effect of MSDC-0160. We investigated behavioral, cellular, and metabolic impact of chronic MSDC-0160 treatment in unilateral 6-OHDA PD rats. We evaluated mitochondrially related processes through the expression of pivotal mitochondrial enzymes in dorsal striatal biopsies and the level of metabolites in serum samples using nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. MSDC-0160 treatment in unilateral 6-OHDA rats improved motor behavior, decreased dopaminergic denervation, and reduced mTOR activity and neuroinflammation. Concomitantly, MSDC-0160 administration strongly modified energy metabolism as revealed by increased ketogenesis, beta oxidation, and glutamate oxidation to satisfy energy needs and maintain energy homeostasis. MSDC-0160 exerts its neuroprotective effect through reorganization of multiple pathways connected to energy metabolism.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Piridinas , Ratos , TiazolidinedionasRESUMO
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) represent a technical revolution in integrative neuroscience. However, the first used ligands exhibited dose-dependent selectivity for their molecular target, leading to potential unspecific effects. Compound 21 (C21) was recently proposed as an alternative, but in vivo characterization of its properties is not sufficient yet. Here, we evaluated its potency to selectively modulate the activity of nigral dopaminergic (DA) neurons through the canonical DREADD receptor hM4Di using TH-Cre rats. In males, 1 mg.kg-1 of C21 strongly increased nigral neurons activity in control animals, indicative of a significant off-target effect. Reducing the dose to 0.5 mg.kg-1 circumvented this unspecific effect, while activated the inhibitory DREADDs and selectively reduced nigral neurons firing. In females, 0.5 mg.kg-1 of C21 induced a transient and residual off-target effect that may mitigated the inhibitory DREADDs-mediated effect. This study raises up the necessity to test selectivity and efficacy of chosen ligands for each new experimental condition.