Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 52(16): 5176-5191, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36970749

RESUMO

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.


Assuntos
Complexos de Coordenação , Rutênio , Animais , Ratos , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Rutênio/química , Compostos de Sulfidrila/química , Doenças Cardiovasculares
2.
Eur J Pharmacol ; 921: 174869, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247379

RESUMO

Metal coordination complexes are chemotherapeutic and anti-inflammatory agents. The ruthenium complex FOR811A ([Ru(bpy)2(2-MIM)Cl](PF6)3) FOR811A was evaluated in mice models of acute inflammation and behavioral tests. Animals received FOR811A (3, 10 or 30 mg/kg; i.p.), indomethacin (20 mg/kg; i.p.), L-NAME (20 mg/kg; i.v.) aminoguanidine (50 mg/kg; i.p.) or dexamethasone (0.5 mg/kg; s.c.) 30 min before inflammatory stimulation. Paw edema was induced by carrageenan (400 µg/paw), TNF-α or L-arginine (15 nmol/paw) (5 ng/paw) and evaluated by hydropletismometry 4 h later. Peritonitis was induced by carrageenan (500 µg; i.p.) and evaluated 4 h later for hypernociception and quantification of total/differential leukocytes, total protein reduced glutathione (GSH) and myeloperoxidase (MPO). FOR811A inhibited the paw edema induced by carrageenan at 3 (64%; p < 0.0001), 10 (73%; p < 0.0001) and 30 mg/kg (66%; p < 0.0001), and at 10 mg/kg that induced with L-arginine by 75% or TNF-α by 55% (p = 0.0012). Paw tissues histological analysis showed reduction in mast cells (46%; p = 0.0027), leukocyte infiltrate (66%; p < 0.0001), edema and hemorrhagic areas. Immunohistochemical evaluation revealed inhibition of iNOS (62%; p < 0.0001) and TNF-α (35%; p < 0.0001). In the peritonitis model FOR811A increased (2.8X; p < 0.0001) hypernociceptive threshold, reduced total leukocytes (29%; p < 0.0001), neutrophils (47%; p = 0.0003) and total proteins (36%; p = 0.0082). FOR811A also inhibited MPO (47%; p = 0.0296) and increased GSH (1.8X; p < 0.0001). In the behavioral tests, FOR811A reduced (30.6%) the number of crossings in the open field, and increased (16%) the number of falls in the Rota rod. Concluding, FOR811A presents anti-inflammatory and antioxidant effects, via nitric oxide pathway.


Assuntos
Óxido Nítrico , Compostos Organometálicos , 2,2'-Dipiridil/análogos & derivados , Animais , Anti-Inflamatórios/efeitos adversos , Carragenina/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico
3.
J Inorg Biochem ; 228: 111666, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923187

RESUMO

This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)2(2-MIM)(NO2)]PF6 (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using ß1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the ß1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy. The predictive study revealed molar refractivity (RM): 127.65; Log Po/w = 1.29; topological polar surface area (TPSA): 86.26 Å2; molar mass (MM) = 541.55 g/mol; low solubility, high unsaturation index, high gastrointestinal absorption; toxicity class 4; failure to cross the blood-brain barrier and to react with cytochrome P450 (CYP) enzymes CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. After the HET-CAM assay, the FOR711A complex was classified as non-irritant (N.I.) and its vasodilator effect was confirmed through greater evidence of blood vessels after the administration and ending of the observation period of 5 min. These results suggest that FOR711A presented a potential stimulator/activator effect of sGC via NO/sGC/cGMP. However, results indicate it needs a vehicle for oral administration.


Assuntos
Complexos de Coordenação/química , Óxido Nítrico/química , Rutênio/química , Vasodilatadores/química , Vasodilatadores/farmacologia , Animais , Galinhas , Membrana Corioalantoide/metabolismo , Heme/química , Humanos , Imidazóis/química , Simulação de Acoplamento Molecular/métodos , Óxido Nítrico/metabolismo , Oxigênio/química , Domínios Proteicos , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo
4.
PLoS One ; 16(3): e0248394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711054

RESUMO

We aimed at evaluating the anti-asthmatic effect of cis-[Ru(bpy)2(2-MIM)(NO)](PF6)3 (FOR811A), a nitrosyl-ruthenium compound, in a murine model of allergic asthma. The anti-asthmatic effects were analyzed by measuring the mechanical lung and morphometrical parameters in female Swiss mice allocated in the following groups: untreated control (Ctl+Sal) and control treated with FOR811A (Ctl+FOR), along asthmatic groups untreated (Ast+Sal) and treated with FOR811A (Ast+FOR). The drug-protein interaction was evaluated by in-silico assay using molecular docking. The results showed that the use of FOR811A in experimental asthma (Ast+FOR) decreased the pressure-volume curve, hysteresis, tissue elastance, tissue resistance, and airway resistance, similar to the control groups (Ctl+Sal; Ctl+FOR). However, it differed from the untreated asthmatic group (Ast+Sal, p<0.05), indicating that FOR811A corrected the lung parenchyma and relaxed the smooth muscles of the bronchi. Similar to control groups (Ctl+Sal; Ctl+FOR), FOR811A increased the inspiratory capacity and static compliance in asthmatic animals (Ast+Sal, p<0.05), showing that this metallodrug improved the capacity of inspiration during asthma. The morphometric parameters showed that FOR811A decreased the alveolar collapse and kept the bronchoconstriction during asthma. Beyond that, the molecular docking using FOR811A showed a strong interaction in the distal portion of the heme group of the soluble guanylate cyclase, particularly with cysteine residue (Cys141). In summary, FOR811A relaxed bronchial smooth muscles and improved respiratory mechanics during asthma, providing a protective effect and promising use for the development of an anti-asthmatic drug.


Assuntos
Antiasmáticos , Asma , Doadores de Óxido Nítrico , Compostos Organometálicos , Mecânica Respiratória/efeitos dos fármacos , Rutênio , Animais , Antiasmáticos/química , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Asma/fisiopatologia , Feminino , Camundongos , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , Rutênio/farmacologia
5.
J Inorg Biochem ; 206: 111048, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151873

RESUMO

Inflammation is a physiological process triggered in response to tissue damage, and involves events related to cell recruitment, cytokines release and reactive oxygen species (ROS) production. Failing to control the process duration lead to chronification and may be associated with the development of various pathologies, including autoimmune diseases and cancer. Considering the pharmacological potential of metal-based compounds, two new ruthenium complexes were synthesized: cis-[Ru(NO2)(bpy)2(5NIM)]PF6 (1) and cis-[RuCl(bpy)2(MTZ)]PF6 (2), where bpy = 2,2'-bipyridine, 5NIM = 5-nitroimidazole and MTZ = metronidazole. Both products were characterized by spectroscopic techniques, followed by Density Functional Theory (DFT) calculations in order to support experimental findings. Afterwards, their in vitro cytotoxic, antioxidant and anti-inflammatory activities were investigated. Compounds 1 and 2 presented expressive in vitro antioxidant activity, reducing lipid peroxidation and decreasing intracellular ROS levels with comparable effectiveness to the standard steroidal drug dexamethasone or α-tocopherol. These complexes showed no noticeable cytotoxicity on the tested cancer cell lines. Bactericidal assay against metronidazole-resistant Helicobacter pylori, a microorganism able to disrupt oxidative balance, unraveled compound 1 moderate activity over that strain. Besides this, it was able to inhibit interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) production as well as interleukin-1ß (IL-1ß) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. This latter activity is remarkable, which has not been reported for other ruthenium-based complexes. Altogether, these results suggest cis-[Ru(NO2)(bpy)2(5NIM)]PF6 complex has potential pharmacological application as an anti-inflammatory agent that deserve further biological investigation.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Imidazóis/química , Rutênio/química , Células A549 , Animais , Antibacterianos/química , Anti-Inflamatórios/química , Antineoplásicos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Proliferação de Células , Complexos de Coordenação/química , Humanos , Peroxidação de Lipídeos , Células MCF-7 , Camundongos , Estrutura Molecular , Células RAW 264.7 , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA