Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339514

RESUMO

A large portion of the pipe infrastructure used in the chemical processing industry is susceptible to corrosion under insulation (CUI). Eddy current-based magnetic sensing is one of the methods that can be used as an early detector of this corrosion. However, the large sensor-to-pipe distances used in this method, due to the presence of insulation, limits the sensitivity to corrosion. This paper will describe the development of instrumentation and methods based on eddy current sensing with thin-film magnetic sensors. In particular, it focuses on the influence of the sensor angle relative to the radial magnetic field. The influence of this parameter on the amplitude of the measured signal was investigated by both finite element simulations and experimental observations. The measured magnetic field was found to be highly sensitive to small changes in sensor angle, with the estimated depth of a defect changing at a rate of 11.2 mm/degree of sensor rotation for small angles. It is also shown that a sensor aligned with the radial direction should be avoided, with an optimal sensor angle between 0.5 and 4 degrees. With the sensor in this angle range, the simulations have shown it should be possible to resolve the depth of corrosion to a resolution of 0.1 mm.

2.
PLoS One ; 17(6): e0270164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709181

RESUMO

Microelectrodes are commonly used in electrochemical analysis and biological sensing applications owing to their miniaturised dimensions. It is often desirable to improve the performance of microelectrodes by reducing their electrochemical impedance for increasing the signal-to-noise of the recorded signals. One successful route is to incorporate nanomaterials directly onto microelectrodes; however, it is essential that these fabrication routes are simple and repeatable. In this article, we demonstrate how to synthesise metal encapsulated ZnO nanowires (Cr/Au-ZnO NWs, Ti-ZnO NWs and Pt-ZnO NWs) to reduce the impedance of the microelectrodes. Electrochemical impedance modelling and characterisation of Cr/Au-ZnO NWs, Ti-ZnO NWs and Pt-ZnO NWs are carried out in conjunction with controls of planar Cr/Au and pristine ZnO NWs. It was found that the ZnO NW microelectrodes that were encapsulated with a 10 nm thin layer of Ti or Pt demonstrated the lowest electrochemical impedance of 400 ± 25 kΩ at 1 kHz. The Ti and Pt encapsulated ZnO NWs have the potential to offer an alternative microelectrode modality that could be attractive to electrochemical and biological sensing applications.


Assuntos
Nanoestruturas , Nanofios , Óxido de Zinco , Impedância Elétrica , Microeletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA