Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Tetrahedron Lett ; 56(23): 3639-3642, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26034339

RESUMO

Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6.

2.
Cell Cycle ; 14(14): 2323-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946202

RESUMO

The tumor suppressor, PTEN, is one of the most commonly mutated genes in cancer. Recently, PTEN has been shown to localize in the nucleus and is required to maintain genomic stability. Here, we show that nuclear PTEN, independent of its phosphatase activity, is essential for maintaining heterochromatin structure. Depletion of PTEN leads to loss of heterochromatic foci, decreased chromatin compaction, overexpression of heterochromatic genes, and reduced protein stability of heterochromatin protein 1 α. We found that the C-terminus of PTEN is required to maintain heterochromatin structure. Additionally, cancer-associated PTEN mutants lost their tumor-suppressor function when their heterochromatin structure was compromised. We propose that this novel role of PTEN accounts for its function in guarding genomic stability and suppressing tumor development.


Assuntos
Heterocromatina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox , Cromonas/farmacologia , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/química , Humanos , Imunoprecipitação , Camundongos , Morfolinas/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo
3.
Nucleic Acids Res ; 41(22): 10518-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24021631

RESUMO

Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/efeitos da radiação , Benzodioxóis/química , Proteínas de Fluorescência Verde/genética , Guanosina/química , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Luz , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Uridina/química
4.
ACS Chem Biol ; 8(10): 2272-82, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23915424

RESUMO

Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is typically needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent, and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity.


Assuntos
Técnicas de Transferência de Genes , Luz , Oligonucleotídeos Antissenso/metabolismo , Sequência de Bases , Células HeLa , Humanos , Modelos Biológicos , Estrutura Molecular , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
5.
Angew Chem Int Ed Engl ; 51(36): 9066-70, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22855386

RESUMO

Keeping the boron out of the ER: A genetic switch was engineered that activates gene expression in the presence of H(2)O(2). The use of a boronate group on an estrone molecule allows for activation of gene expression through binding of the estrogen receptor only when the boron group is oxidized by H(2)O(2). This sensor is highly sensitive and specific for H(2)O(2).

6.
ACS Chem Biol ; 7(7): 1247-56, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22540192

RESUMO

Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, allowing for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture.


Assuntos
DNA/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/metabolismo , Estimulação Luminosa , Transcrição Gênica/fisiologia , DNA/química , Células HEK293 , Humanos , Oligonucleotídeos/química , Estimulação Luminosa/métodos
7.
Bioconjug Chem ; 22(10): 2136-42, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21928851

RESUMO

Oligonucleotides are effective tools for the regulation of gene expression in cell culture and model organisms, most importantly through antisense mechanisms. Due to the inherent instability of DNA antisense agents, various modifications have been introduced to increase the efficacy of oligonucleotides, including phosphorothioate DNA, locked nucleic acids, peptide nucleic acids, and others. Here, we present antisense agent stabilization through conjugation of a poly(ethylene glycol) (PEG) group to a DNA oligonucleotide. By employing a photocleavable linker between the PEG group and the antisense agent, we were able to achieve light-induced deactivation of antisense activity. The bioconjugated PEG group provides stability to the DNA antisense agent without affecting its native function of silencing gene expression via RNase H-catalyzed mRNA degradation. Once irradiated with UV light of 365 nm, the PEG group is cleaved from the antisense agent leaving the DNA unprotected and open for degradation by endogenous nucleases, thereby restoring gene expression. By using a photocleavable PEG group (PhotoPEG), antisense activity can be regulated with high spatial and temporal resolution, paving the way for precise regulation of gene expression in biological systems.


Assuntos
DNA Antissenso/química , DNA Antissenso/genética , Regulação da Expressão Gênica , Polietilenoglicóis/química , Animais , DNA Antissenso/síntese química , DNA Antissenso/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Camundongos , Células NIH 3T3 , Desnaturação de Ácido Nucleico , Fotólise , Ribonuclease H/metabolismo , Raios Ultravioleta
8.
J Am Chem Soc ; 133(33): 13176-82, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21761875

RESUMO

DNA decoys have been developed for the inhibition of transcriptional regulation of gene expression. However, the present methodology lacks the spatial and temporal control of gene expression that is commonly found in nature. Here, we report the application of photoremovable protecting groups on nucleobases of nuclear factor κB (NF-κB) DNA decoys to regulate NF-κB-driven transcription of secreted alkaline phosphatase using light as an external control element. The NF-κB family of proteins is comprised of important eukaryotic transcription factors that regulate a wide range of cellular processes and are involved in immune response, development, cellular growth, and cell death. Several diseases, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease, have been linked to constitutively active NF-κB. Through the direct incorporation of caging groups into an NF-κB decoy, we were able to disrupt DNA:DNA hybridization and inhibit the binding of the transcription factor to the DNA decoy until UV irradiation removed the caging groups and restored the activity of the oligonucleotide. Excellent light-switching behavior of transcriptional regulation was observed. This is the first example of a caged DNA decoy for the photochemical regulation of gene expression in mammalian cells and represents an important addition to the toolbox of light-controlled gene regulatory agents.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , NF-kappa B/metabolismo , Oligodesoxirribonucleotídeos/efeitos da radiação , Fosfatase Alcalina/genética , Luz , Métodos , Processos Fotoquímicos , Transcrição Gênica/efeitos dos fármacos
9.
J Am Chem Soc ; 132(44): 15644-50, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20961123

RESUMO

Morpholino oligonucleotides, or morpholinos, have emerged as powerful antisense reagents for evaluating gene function in both in vitro and in vivo contexts. However, the constitutive activity of these reagents limits their utility for applications that require spatiotemporal control, such as tissue-specific gene disruptions in embryos. Here we report a novel and efficient synthetic route for incorporating photocaged monomeric building blocks directly into morpholino oligomers and demonstrate the utility of these caged morpholinos in the light-activated control of gene function in both cell culture and living embryos. We demonstrate that a caged morpholino that targets enhanced green fluorescent protein (EGFP) disrupts EGFP production only after exposure to UV light in both transfected cells and living zebrafish (Danio rerio) and Xenopus frog embryos. Finally, we show that a caged morpholino targeting chordin, a zebrafish gene that yields a distinct phenotype when functionally disrupted by conventional morpholinos, elicits a chordin phenotype in a UV-dependent manner. Our results suggest that photocaged morpholinos are readily synthesized and highly efficacious tools for light-activated spatiotemporal control of gene expression in multiple contexts.


Assuntos
Embrião não Mamífero , Morfolinas/química , Oligonucleotídeos , Raios Ultravioleta , Xenopus laevis , Peixe-Zebra , Animais , Células Cultivadas , Embrião não Mamífero/metabolismo , Expressão Gênica , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Chembiochem ; 10(10): 1612-6, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19533711

RESUMO

Removal by the light: The photochemical regulation of restriction endonucleases, which are important enzymes in molecular biology, has been investigated. Photolabile protecting groups have been installed on DNA substrates and have been demonstrated to inhibit restriction endonuclease activity until removed by UV light irradiation. Interestingly, these groups do not appear to dramatically affect initial binding of the enzyme to the DNA substrate, but rather prevent recognition of the specific cleavage site.


Assuntos
Benzodioxóis/química , Enzimas de Restrição do DNA/metabolismo , DNA/química , Timidina/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/efeitos da radiação , Clivagem do DNA , Enzimas de Restrição do DNA/genética , Desoxirribonuclease BamHI/genética , Desoxirribonuclease BamHI/metabolismo , Desoxirribonuclease EcoRI/genética , Desoxirribonuclease EcoRI/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Especificidade por Substrato , Timidina/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA