Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1072750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874212

RESUMO

Introduction: Adipose-derived multipotent mesenchymal stromal cells (ADSCs) are widely used for cell therapy, in particular for the treatment of diseases of the nervous system. An important issue is to predict the effectiveness and safety of such cell transplants, considering disorders of adipose tissue under age-related dysfunction of sex hormones production. The study aimed to investigate the ultrastructural characteristics of 3D spheroids formed by ADSCs of ovariectomized mice of different ages compared to age-matched controls. Methods: ADSCs were obtained from female CBA/Ca mice randomly divided into four groups: CtrlY-control young (2 months) mice, CtrlO-control old (14 months) mice, OVxY-ovariectomized young mice, and OVxO-ovariectomized old mice of the same age. 3D spheroids were formed by micromass technique for 12-14 days and their ultrastructural characteristics were estimated by transmission electron microscopy. Results and Discussion: The electron microscopy analysis of spheroids from CtrlY animals revealed that ADSCs formed a culture of more or less homogeneous in size multicellular structures. The cytoplasm of these ADSCs had a granular appearance due to being rich in free ribosomes and polysomes, indicating active protein synthesis. Extended electron-dense mitochondria with a regular cristae structure and a predominant condensed matrix were observed in ADSCs from CtrlY group, which could indicate high respiratory activity. At the same time, ADSCs from CtrlO group formed a culture of heterogeneous in size spheroids. In ADSCs from CtrlO group, the mitochondrial population was heterogeneous, a significant part was represented by more round structures. This may indicate an increase in mitochondrial fission and/or an impairment of the fusion. Significantly fewer polysomes were observed in the cytoplasm of ADSCs from CtrlO group, indicating low protein synthetic activity. The cytoplasm of ADSCs in spheroids from old mice had significantly increased amounts of lipid droplets compared to cells obtained from young animals. Also, an increase in the number of lipid droplets in the cytoplasm of ADSCs was observed in both the group of young and old ovariectomized mice compared with control animals of the same age. Together, our data indicate the negative impact of aging on the ultrastructural characteristics of 3D spheroids formed by ADSCs. Our findings are particularly promising in the context of potential therapeutic applications of ADSCs for the treatment of diseases of the nervous system.

2.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769453

RESUMO

Impaired motor and sensory functions are the main features of Charcot-Marie-Tooth disease. Mesenchymal stem cell (MSCs) therapy is one of the possible treatments for this disease. It was assumed that MSCs therapy can improve the contractile properties of the triceps surae (TS) muscles in mice with hereditary peripheral neuropathy. Murine adipose-derived mesenchymal stromal cells (AD-MSCs) were obtained for transplantation into TS muscles of FVB-C-Tg(GFPU)5Nagy/J mice. Three months after AD-MSCs transplantation, animals were subjected to electrophysiological investigations. Parameters of TS muscle tension after intermittent high frequency electrical sciatic nerve stimulations were analyzed. It was found that force of TS muscle tension contraction in animals after AD-MSCs treatment was two-time higher than in untreated mice. Normalized values of force muscle contraction in different phases of electrical stimulation were 0.3 ± 0.01 vs. 0.18 ± 0.01 and 0.26 ± 0.03 vs. 0.13 ± 0.03 for treated and untreated animals, respectively. It is assumed that the two-fold increase in TS muscle strength was caused by stem cell therapy. Apparently, AD-MSCs therapy can promote nerve regeneration and partial restoration of muscle function, and thus can be a potential therapeutic agent for the treatment of peripheral neuropathies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença de Charcot-Marie-Tooth/terapia , Células-Tronco Mesenquimais/citologia , Músculo Esquelético/fisiologia , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Contração Muscular , Regeneração Nervosa/fisiologia
3.
J Pers Med ; 10(3)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707898

RESUMO

Brain inflammation is a key event triggering the pathological process associated with many neurodegenerative diseases. Current personalized medicine and translational research in neurodegenerative diseases focus on adipose-derived stem cells (ASCs), because they are patient-specific, thereby reducing the risk of immune rejection. ASCs have been shown to exert a therapeutic effect following transplantation in animal models of neuroinflammation. However, the mechanisms by which transplanted ASCs promote cell survival and/or functional recovery are not fully understood. We investigated the effects of ASCs in in vivo and in vitro lipopolysaccharide (LPS)-induced neuroinflammatory models. Brain damage was evaluated immunohistochemically using specific antibody markers of microglia, astroglia and oligodendrocytes. ASCs were used for intracerebral transplantation, as well as for non-contact co-culture with brain slices. In both in vivo and in vitro models, we found that LPS caused micro- and astroglial activation and oligodendrocyte degradation, whereas the presence of ASCs significantly reduced the damaging effects. It should be noted that the observed ASCs protection in a non-contact co-culture suggested that this effect was due to humoral factors via ASC-released biomodulatory molecules. However, further clinical studies are required to establish the therapeutic mechanisms of ASCs, and optimize their use as a part of a personalized medicine strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA