Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7981): 180-187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648864

RESUMO

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Assuntos
Antibacterianos , Sítios de Ligação , RNA Polimerases Dirigidas por DNA , Escherichia coli , Mutação , Rifampina , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Quebras de DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Nucleotídeos/deficiência , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Rifampina/química , Rifampina/metabolismo , Rifampina/farmacologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
2.
Cell ; 186(11): 2425-2437.e21, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196657

RESUMO

Ribonuclease HII (RNaseHII) is the principal enzyme that removes misincorporated ribonucleoside monophosphates (rNMPs) from genomic DNA. Here, we present structural, biochemical, and genetic evidence demonstrating that ribonucleotide excision repair (RER) is directly coupled to transcription. Affinity pull-downs and mass-spectrometry-assisted mapping of in cellulo inter-protein cross-linking reveal the majority of RNaseHII molecules interacting with RNA polymerase (RNAP) in E. coli. Cryoelectron microscopy structures of RNaseHII bound to RNAP during elongation, with and without the target rNMP substrate, show specific protein-protein interactions that define the transcription-coupled RER (TC-RER) complex in engaged and unengaged states. The weakening of RNAP-RNaseHII interactions compromises RER in vivo. The structure-functional data support a model where RNaseHII scans DNA in one dimension in search for rNMPs while "riding" the RNAP. We further demonstrate that TC-RER accounts for a significant fraction of repair events, thereby establishing RNAP as a surveillance "vehicle" for detecting the most frequently occurring replication errors.


Assuntos
Reparo do DNA , RNA Polimerases Dirigidas por DNA , Escherichia coli , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Ribonucleotídeos/metabolismo
3.
Nat Struct Mol Biol ; 30(5): 600-607, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997761

RESUMO

Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.


Assuntos
Proteínas de Escherichia coli , Guanosina Tetrafosfato , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Raios Ultravioleta , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Reparo do DNA , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica
4.
Nature ; 604(7904): 152-159, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355008

RESUMO

Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.


Assuntos
Proteínas de Bactérias , Reparo do DNA , Escherichia coli , Transcrição Gênica , Adenosina Trifosfatases , Bactérias/genética , Proteínas de Bactérias/genética , Dano ao DNA , DNA Helicases , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA