Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 50(15): 8643-8657, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35929028

RESUMO

Replication of the circular bacterial chromosome is initiated from a locus oriC with the aid of an essential protein DnaA. One approach to identify factors acting to prevent aberrant oriC-independent replication initiation in Escherichia coli has been that to obtain mutants which survive loss of DnaA. Here, we show that a ΔrecD mutation, associated with attenuation of RecBCD's DNA double strand end-resection activity, provokes abnormal replication and rescues ΔdnaA lethality in two situations: (i) in absence of 5'-3' single-strand DNA exonuclease RecJ, or (ii) when multiple two-ended DNA double strand breaks (DSBs) are generated either by I-SceI endonucleolytic cleavages or by radiomimetic agents phleomycin or bleomycin. One-ended DSBs in the ΔrecD mutant did not rescue ΔdnaA lethality. With two-ended DSBs in the ΔrecD strain, ΔdnaA viability was retained even after linearization of the chromosome. Data from genome-wide DNA copy number determinations in ΔdnaA-rescued cells lead us to propose a model that nuclease-mediated DNA resection activity of RecBCD is critical for prevention of a σ-mode of rolling-circle over-replication when convergent replication forks merge and fuse, as may be expected to occur during normal replication at the chromosomal terminus region or during repair of two-ended DSBs following 'ends-in' replication.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Aberrações Cromossômicas , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exonucleases/genética
2.
Nucleic Acids Res ; 48(2): 847-861, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31802130

RESUMO

RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5'-sensor pocket that renders enzyme activity maximal on 5'-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself ('recessive resurrection'). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5'-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5'-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH's endonucleolytic action.


Assuntos
Domínio Catalítico/genética , Endorribonucleases/genética , RNA/genética , Sítios de Ligação/genética , Catálise , Endorribonucleases/química , Escherichia coli/química , Escherichia coli/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação/genética , Peptídeos/genética , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/genética , Conformação Proteica , Multimerização Proteica/genética , RNA/química , RNA Helicases/química , RNA Helicases/genética , Motivos de Ligação ao RNA/genética
3.
Nucleic Acids Res ; 47(11): 5698-5711, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30957852

RESUMO

The Dam DNA methylase of Escherichia coli is required for methyl-directed mismatch repair, regulation of chromosomal DNA replication initiation from oriC (which is DnaA-dependent), and regulation of gene expression. Here, we show that Dam suppresses aberrant oriC-independent chromosomal replication (also called constitutive stable DNA replication, or cSDR). Dam deficiency conferred cSDR and, in presence of additional mutations (Δtus, rpoB*35) that facilitate retrograde replication fork progression, rescued the lethality of ΔdnaA mutants. The DinG helicase was required for rescue of ΔdnaA inviability during cSDR. Viability of ΔdnaA dam derivatives was dependent on the mismatch repair proteins, since such viability was lost upon introduction of deletions in mutS, mutH or mutL; thus generation of double strand ends (DSEs) by MutHLS action appears to be required for cSDR in the dam mutant. On the other hand, another DSE-generating agent phleomycin was unable to rescue ΔdnaA lethality in dam+ derivatives (mutS+ or ΔmutS), but it could do so in the dam ΔmutS strain. These results point to a second role for Dam deficiency in cSDR. We propose that in Dam-deficient strains, there is an increased likelihood of reverse replication restart (towards oriC) following recombinational repair of DSEs on the chromosome.


Assuntos
Cromossomos/genética , Reparo do DNA , Replicação do DNA , Escherichia coli/enzimologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , Alelos , Proteínas de Bactérias/metabolismo , Aberrações Cromossômicas , DNA/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dosagem de Genes , Regulação Bacteriana da Expressão Gênica , Mutação , Fenótipo , Fleomicinas/química , Recombinação Genética , Análise de Sequência de DNA
4.
Nucleic Acids Res ; 46(7): 3400-3411, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29474582

RESUMO

Transcription termination by Rho is essential for viability in various bacteria, including some major pathogens. Since Rho acts by targeting nascent RNAs that are not simultaneously translated, it also regulates antisense transcription. Here we show that RNase H-deficient mutants of Escherichia coli exhibit heightened sensitivity to the Rho inhibitor bicyclomycin, and that Rho deficiency provokes increased formation of RNA-DNA hybrids (R-loops) which is ameliorated by expression of the phage T4-derived R-loop helicase UvsW. We also provide evidence that in Rho-deficient cells, R-loop formation blocks subsequent rounds of antisense transcription at more than 500 chromosomal loci. Hence these antisense transcripts, which can extend beyond 10 kb in their length, are only detected when Rho function is absent or compromised and the UvsW helicase is concurrently expressed. Thus the potential for antisense transcription in bacteria is much greater than hitherto recognized; and the cells are able to retain viability even when nearly one-quarter of their total non-rRNA abundance is accounted for by antisense transcripts, provided that R-loop formation from them is curtailed.


Assuntos
Genoma Bacteriano/genética , Fator Rho/genética , Terminação da Transcrição Genética , Transcrição Gênica , Bacteriófago T4/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cromossomos/genética , DNA Helicases/genética , Replicação do DNA/genética , DNA Antissenso/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes de RNAr/genética , Genoma Bacteriano/efeitos dos fármacos , Fator Rho/antagonistas & inibidores , Ribonuclease H/genética , Proteínas Virais/genética
5.
PLoS Genet ; 11(1): e1004909, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569209

RESUMO

In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA-DNA hybrids or R-loops. Here, I discuss the distinctive attributes of fork progression and termination associated with different modes of bacterial replication initiation. Two hypothetical models are proposed: that head-on collisions between pairs of replication forks, which are a feature of replication termination in all kingdoms of life, provoke bilateral fork reversal reactions; and that cSDR is characterized by existence of distinct subpopulations in bacterial cultures and a widespread distribution of origins in the genome, each with a small firing potential. Since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase, it is possible that cSDR-like events promote aberrant replication initiation even in eukaryotes.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA/genética , Origem de Replicação/genética , Transcrição Gênica , Bacillus subtilis/genética , DNA Helicases , DNA Bacteriano/genética , Genoma Bacteriano , Ribonucleases
6.
Genes Dev ; 21(10): 1258-72, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17504942

RESUMO

In vivo transcription of the Escherichia coli argO gene, which encodes an arginine (Arg) exporter, requires the LysR-family regulator protein ArgP (previously called IciA) and is induced in the presence of Arg or its naturally occurring antimetabolite analog canavanine. Lysine (Lys) addition, on the other hand, phenocopies an argP mutation to result in the shutoff of argO expression. We now report that the ArgP dimer by itself is able to bind the argO promoter-operator region to form a binary complex, but that the formation of a ternary complex with RNA polymerase is greatly stimulated only in presence of a coeffector. Both Arg and Lys were proficient as coeffectors for ArgP-mediated recruitment of RNA polymerase to, and open complex formation at, the argO promoter, although only Arg (but not Lys) was competent to activate transcription. The two coeffectors competed for binding to ArgP, and the ternary complex that had been assembled on the argO template in the presence of Lys could be chased into a transcriptionally active state upon Arg addition. Our results support a novel mechanism of argO regulation in which Lys-bound ArgP reversibly restrains RNA polymerase at the promoter, at a step (following open complex formation) that precedes, and is common to, both abortive and productive transcription. This represents, therefore, the first example of an environmental signal regulating the final step of promoter clearance by RNA polymerase in bacterial transcription. We propose that, in E. coli cells, the ternary complex remains assembled and poised at the argO promoter at all times to respond, positively or negatively, to instantaneous changes in the ratio of intracellular Arg to Lys concentrations.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Fatores de Complexo Ternário/metabolismo , Transcrição Gênica/fisiologia , Sistemas de Transporte de Aminoácidos Básicos/genética , Arginina/metabolismo , Sítios de Ligação/genética , Primers do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Lisina/metabolismo , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Fatores de Complexo Ternário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA