RESUMO
Here, we use telomerase-deficient mice, Terc(-/-), to study the impact of telomerase abrogation in response to treatment with the alkylating agent N-Methyl-N-Nitrosourea (MNU), a potent carcinogen in the mouse. Wild-type mice treated with MNU developed lymphomas and carcinomas. In contrast, similarly treated G5 Terc(-/-) mice with critically short telomeres did not develop tumors and died of acute toxicity to the small intestine. G2 Terc(-/-) mice, which have long telomeres, were less susceptible to MNU-induced tumors than wild-type mice, as well as less sensitive to MNU toxicity than G5 Terc(-/-) mice. The results indicate that short telomeres suppress tumor growth and that lack of telomerase retards tumor progression, even in the presence of long telomeres. Finally, G5 Terc(-/-) hypersensitivity to MNU supports the notion that short telomeres interfere with proper DNA damage repair.
Assuntos
Alquilantes/toxicidade , Metilnitrosoureia/toxicidade , Telômero/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/genética , Telomerase/antagonistas & inibidores , Telomerase/deficiência , Telomerase/genéticaRESUMO
The homologous recombination (HR) DNA repair pathway participates in telomere length maintenance in yeast but its putative role at mammalian telomeres is unknown. Mammalian Rad54 is part of the HR machinery, and Rad54-deficient mice show a reduced HR capability. Here, we show that Rad54-deficient mice also show significantly shorter telomeres than wild-type controls, indicating that Rad54 activity plays an essential role in telomere length maintenance in mammals. Rad54 deficiency also resulted in an increased frequency of end-to-end chromosome fusions involving telomeres compared to the controls, suggesting a putative role of Rad54 in telomere capping. Finally, the study of mice doubly deficient for Rad54 and DNA-PKcs showed that telomere fusions due to DNA-PKcs deficiency were not rescued in the absence of Rad54, suggesting that they are not mediated by Rad54 activity.
Assuntos
Reparo do DNA , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Telômero/genética , Animais , Células Cultivadas , Aberrações Cromossômicas , DNA Helicases , Enzimas Reparadoras do DNA , Genótipo , Heterozigoto , Hibridização in Situ Fluorescente , Camundongos , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismoRESUMO
The existence of a capping structure at the extremities of chromosomes was first deduced in the 1930s by Herman Müller (Müller, 1938), who showed that X-irradiation of Drosophila rarely resulted in terminal deletions or inversions of chromosomes, suggesting that chromosome ends have protective structures that distinguish them from broken chromosomes, which he named telomeres. In this review, we will focus on mammalian telomeres and, in particular, on the analysis of different mouse models for proteins that are important for telomere function, such as telomerase and various telomere-binding proteins. These murine models are helping us to understand the consequences of telomere dysfunction for cancer, aging and DNA repair, as well as, the molecular mechanisms by which telomeres exert their protective function.