Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398804

RESUMO

Obesity induced by a high-fat (HF) diet increases bone resorption and/or decreases bone formation, resulting in reduced bone mass and strength in various animal models. Studies showed that Ca intake is a modifiable factor for osteoporosis and obesity. This study investigated whether Ca deficiency affects bone structure and adiposity in ovariectomized (OVX) rats fed a HF diet. We hypothesized that Ca deficiency further decreases bone mass and increases fat mass in HF-fed OVX rats. Forty-seven OVX at 6-month-old were randomly assigned to four groups in a 2 × 2 factorial design: normal-fat (NF, 10% fat as energy) or HF (45% fat as energy) diet with either low Ca (LC, 1 g/4057 kcal) or normal Ca (NC, 6 g/4057 kcal). In addition, 12 sham-operated rats at 6 months old were fed a NFNC diet as a control for the OVX procedure. Rats were fed the respective diet for 4 months. Dietary Ca content did not affect body weight, fat mass, lean mass, food intake, energy intake, and serum cytokines. Compared to NC, LC resulted in lower tibial bone volume/total volume (BV/TV, p < 0.01), connectivity density (p < 0.01), trabecular number (Tb.N, p = 0.01), bone mineral density (BMD, p < 0.01), and femur weight (p < 0.01), femur content of Ca (p < 0.01), Cu (p = 0.03), Zn (p < 0.01), and greater trabecular separation (Tb.Sp, p < 0.01) at proximal tibia indicating bone structure deterioration. Compared to rats on the NF diet, animals fed the HF had lower BV/TV (p = 0.03) and Tb.N (p < 0.01) with greater body weight (p < 0.01), fat mass (p < 0.01), Tb.Sp (p = 0.01), the content of Ca, Cu, and Zn in the femur, and serum leptin (p < 0.01). There were no significant interactions between Ca and fat for body composition and bone structural parameters. Compared to Sham, OVX resulted in greater body weight and fat mass. The trabecular bone structure of the tibia, but not the cortical bone, was significantly impaired by the OVX procedure. These data indicate that inadequate Ca intake and a high-fat diet have independent negative effects on bone structure and that Ca deficiency does not affect adiposity in OVX rats.


Assuntos
Densidade Óssea , Desnutrição , Ratos , Animais , Feminino , Humanos , Dieta Hiperlipídica/efeitos adversos , Cálcio/farmacologia , Adiposidade , Obesidade , Ovariectomia
2.
Ultrason Sonochem ; 103: 106775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278041

RESUMO

The study of organic molecules in meteorite and return samples allows for the understanding of the chemistry that undergoes in our Solar System. The present work aims at studying ultrasound assisted extraction technique as effective extraction method for these molecules in extraterrestrial samples and analogs. Optimal conditions were selected from the investigation of ultrasonic frequency, irradiation duration and solvent effects on amino acids, nucleobases and dipeptides extraction yields from a model clay-rich mineral matrix. Optimal ultrasound-assisted extraction parameters were frequency of 20 kHz within 20 min irradiation time and methanol/water solvent ratio of 1. We then validated this protocol on Mukundpura and Tarda meteorite fragments and compared it to the reference extraction protocol used in astrobiology and based on 24 h extraction time at 100 °C in water We obtained similar quantitative results without any racemization with both methodologies.


Assuntos
Aminoácidos , Exobiologia , Argila , Solventes/química , Água , Minerais
3.
Front Physiol ; 14: 1142057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965104

RESUMO

Background: Circadian clock genes are expressed in bone and biomarkers of bone resorption and formation exhibit diurnal patterns in animals and humans. Disruption of the diurnal rhythms may affect the balance of bone turnover and compromise the beneficial effects of exercise on bone. Objective: This study investigated whether the time of day of exercise alters bone metabolism in a rodent model. We hypothesized that exercise during the active phase results in greater bone mass than exercise during the rest phase in older female rats. Methods: Fifty-five, female 12-month-old Sprague Dawley rats were randomly assigned to four treatment groups (n = 13-14/group). Rats were subjected to no exercise or 2 h of involuntary exercise at 9 m/min and 5 days/wk for 15 weeks using motor-driven running wheels at Zeitgeber time (ZT) 4-6 (rest phase), 12-14 (early active phase), or 22-24 (late active phase). ZT 0 is defined as light on, the start of the rest phase. A red lamp was used at minimal intensity during the active, dark phase exercise period, i.e., ZT 12-14 and 22-24. Bone structure, body composition, and bone-related cytokines in serum and gene expression in bone were measured. Data were analyzed using one-way ANOVA followed by Tukey-Kramer post hoc contrasts. Results: Exercise at different ZT did not affect body weight, fat mass, lean mass, the serum bone biomarkers, bone structural or mechanical parameters, or expression of circadian genes. Exercise pooled exercise data from different ZT were compared to the No-Exercise data (a priori contrast) increased serum IGF-1 and irisin concentrations, compared to No-Exercise. Exercise increased tibial bone volume/total volume (p = 0.01), connectivity density (p = 0.04), and decreased structural model index (p = 0.02). Exercise did not affect expression of circadian genes. Conclusion: These data indicate that exercise is beneficial to bone structure and that the time of day of exercise does not alter the beneficial effect of exercise on bone in older female rats.

4.
Front Microbiol ; 13: 921154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060749

RESUMO

The surface of intertidal estuarine sediments is covered with diatom biofilms excreting exopolymeric substances (EPSs) through photosynthesis. These EPSs are highly reactive and increase sediment cohesiveness notably through organo-mineral interactions. In most sedimentary environments, EPSs are partly to fully degraded by heterotrophic bacteria in the uppermost millimeters of the sediment and so they are thought to be virtually absent deeper in the sedimentary column. Here, we present the first evidence of the preservation of EPSs and EPS-mineral aggregates in a 6-m-long sedimentary core obtained from an estuarine point bar in the Gironde Estuary. EPSs were extracted from 18 depth intervals along the core, and their physicochemical properties were characterized by (i) wet chemical assays to measure the concentrations of polysaccharides and proteins, and EPS deprotonation of functional groups, (ii) acid-base titrations, and (iii) Fourier transform infrared spectroscopy. EPS-sediment complexes were also imaged using cryo-scanning electron microscopy. EPS results were analyzed in the context of sediment properties including facies, grain size, and total organic carbon, and of metabolic and enzymatic activities. Our results showed a predictable decrease in EPS concentrations (proteins and polysaccharides) and reactivity from the surface biofilm to a depth of 0.5 m, possibly linked to heterotrophic degradation. Concentrations remained relatively low down to ca. 4.3 m deep. Surprisingly, at that depth EPSs abundance was comparable to the surface and showed a downward decrease to 6.08 m. cryo-scanning electron microscopy (Cryo-SEM) showed that the EPS complexes with sediment were abundant at all studied depth and potentially protected EPSs from degradation. EPS composition did not change substantially from the surface to the bottom of the core. EPS concentrations and acidity were anti-correlated with metabolic activity, but showed no statistical correlation with grain size, TOC, depth or enzymatic activity. Maximum EPS concentrations were found at the top of tide-dominated sedimentary sequences, and very low concentrations were found in river flood-dominated sedimentary sequences. Based on this observation, we propose a scenario where biofilm development and EPS production are maximal when (i) the point bar and the intertidal areas were the most extensive, i.e., tide-dominated sequences and (ii) the tide-dominated deposit were succeeded by rapid burial beneath sediments, potentially decreasing the probability of encounter between bacterial cells and EPSs.

5.
Anal Bioanal Chem ; 414(12): 3643-3651, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35267058

RESUMO

Search for organic bioindicators in the solar system is a fundamental challenge for the space research community. If tremendous improvements have been achieved in detection, little or no research has been dedicated to extraction of the targets from the studied mineral matrices. Apart from thermodesorption, no extraction step was ever performed in situ within the context of biomarker detection experiments. This work presents an extraction protocol compatible with in situ space constraints. Two extraction methods, i.e., microwave-assisted extraction (MAE) and focused ultrasonic extraction (FUSE), were optimized with the aim of extracting molecules having an astrobiological interest (amino acids, nucleobases, polyaromatic carboxylic acids) and that are included in mineral matrices representative of the Martian soil. Higher efficiency was obtained with the FUSE method (20 kHz, amplitude 80%, pulse and relaxation 1 s each, for 10 min) with yields ranging from 30 to 95%. It was then applied on an Atacama Desert soil sample and Aguas Zarcas meteorite fragment. Both water-soluble and organic-soluble compounds present at trace levels were extracted using this short extraction time, and small amounts of sample and solvent compliant with in situ requirements (50 mg, 500 µL). This unique FUSE/derivatization-GC-MS approach gave similar yields to usual 24 h hot water extraction and increased the recovery of the target molecules compared to the derivatization-GC-MS method already used for in situ space experiments by a factor from 2 to 8. The data highlighted the suitability of a focused ultrasonic method for the extraction of trace organic compounds from extraterrestrial samples.


Assuntos
Marte , Micro-Ondas , Meio Ambiente Extraterreno , Solo/química , Água
6.
J Nutr ; 151(9): 2697-2704, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34113980

RESUMO

BACKGROUND: Bone marrow osteoblasts and adipocytes are derived from a common mesenchymal stem cell and have a reciprocal relationship. Peroxisome proliferator-activated receptor gamma (PPARγ), a regulator for adipocyte differentiation, may be a potential target for reducing obesity and increasing bone mass. OBJECTIVES: This study tested the hypothesis that bone-specific Pparg conditional knockout (cKO), via deletion of Pparg from bone marrow stromal cells (BMSC) using Osterix 1 (Osx1)-Cre, would prevent high-fat (HF) diet-induced bone deterioration in mice. METHODS: PPARγ cKO (PPARγfl/fl: Osx1-Cre) and floxed littermate control (PPARγfl/fl Osx1-Cre- ) mice that were 6 weeks old were randomly assigned to 4 groups (n = 12/group, 6 male and 6 female) and fed ad libitum with either a normal-fat (NF) purified diet (3.85 kcal/g; 10% energy as fat) or an HF diet (4.73 kcal/g; 45% energy as fat) for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. Data were analyzed by 2-way ANOVA with Tukey post hoc comparison. RESULTS: The HF diet decreased the tibial and lumbar vertebrae trabecular bone volume/total volume (BV/TV) by 28% and 18%, respectively, compared to the NF diet (P < 0.01). PPARγ cKO mice had 23% lower body fat mass and 9% lower lean mass than control mice. PPARγ cKO mice had 41% greater tibial trabecular BV/TV compared to control mice. None of trabecular bone parameters at the second lumbar vertebra were affected by genotype. PPARγ cKO mice had decreased cortical thickness compared to control mice. PPARγ cKO mice had a 14% lower (P < 0.01) serum concentration of leptin and a 35% higher (P < 0.05) concentration of osteocalcin compared with control mice. CONCLUSIONS: These data indicate that PPARγ has site-specific impacts on bone structures in mice and that knockout PPARγ in BMSC increased bone mass (BV/TV) in the tibia but not the lumbar vertebrae. PPARγ disruption in BMSC did not prevent HF diet-induced bone deterioration in mice.


Assuntos
Células-Tronco Mesenquimais , PPAR gama , Animais , Osso e Ossos , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética
7.
Astrobiology ; 21(5): 605-612, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684326

RESUMO

Mars was habitable in its early history, but the consensus is that it is quite inhospitable today, in particular because its modern climate cannot support stable liquid water at the surface. Here, we report the presence of magmatic Fe/Mg clay minerals within the mesostasis of the martian meteorite NWA 5790, an unaltered 1.3 Ga nakhlite archetypal of the martian crust. These magmatic clay minerals exhibit a vesicular texture that forms a network of microcavities or pockets, which could serve as microreactors and allow molecular crowding, a necessary step for the emergence of life. Because their formation does not depend on climate, such niches for emerging life may have been generated on Mars at many periods throughout its history, regardless of the stability or availability of liquid water at the surface.


Assuntos
Marte , Meteoroides , Argila , Meio Ambiente Extraterreno , Minerais
8.
J Nutr ; 150(6): 1370-1378, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135009

RESUMO

BACKGROUND: Linoleic acid (LA; 18:2n-6) has been considered to promote low-grade chronic inflammation and adiposity. Studies show adiposity and inflammation are inversely associated with bone mass. OBJECTIVES: This study tested the hypothesis that decreasing the dietary ratio of LA to α-linolenic acid (ALA, 18:3n-3), while keeping ALA constant, mitigates high-fat diet (HF)-induced adiposity and bone loss. METHODS: Male C57BL/6 mice at 6 wk old were assigned to 4 treatment groups and fed 1 of the following diets ad libitum for 6 mo: a normal-fat diet (NF; 3.85 kcal/g and 10% energy as fat) with the ratio of the PUFAs LA to ALA at 6; or HFs (4.73 kcal/g and 45% energy as fat) with the ratio of LA to ALA at 10:1, 7:1, or 4:1, respectively. ALA content in the diets was kept the same for all groups at 1% energy. Bone structure, body composition, bone-related cytokines in serum, and gene expression in bone were measured. Data were analyzed using 1-factor ANOVA. RESULTS: Compared with those fed the NF, mice fed the HFs had 19.6% higher fat mass (P < 0.01) and 13.5% higher concentration of serum tartrate-resistant acid phosphatase (TRAP) (P < 0.05), a bone resorption cytokine. Mice fed the HFs had 19.5% and 12.2% lower tibial and second lumbar vertebral bone mass, respectively (P < 0.01). Decreasing the dietary ratio of LA to ALA from 10 to 4 did not affect body mass, fat mass, serum TRAP and TNF-α, or any bone structural parameters. CONCLUSIONS: These data indicate that decreasing the dietary ratio of LA to ALA from 10 to 4 by simply reducing LA intake does not prevent adiposity or improve bone structure in obese mice.


Assuntos
Adiposidade , Gorduras na Dieta/administração & dosagem , Ácido Linoleico/administração & dosagem , Obesidade/patologia , Osteoporose/patologia , Ácido alfa-Linolênico/administração & dosagem , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Colloid Interface Sci ; 567: 274-284, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32062490

RESUMO

The orientation and organization of molecular guests within the interlayer of clay minerals control the reactivity and performance of tailored organo-clay materials. Such a detailed investigation of hybrid structure on the molecular scale is usually provided by computational methods with limited experimental validation. In this study, polarized attenuated total reflection infrared spectroscopy was used to extract quantitative orientation measurements of montmorillonite particles. The validity of the evanescent electric field amplitude calculations necessary to derive the order parameter was critically evaluated to propose a methodology for determining the orientation of the normal to the clay layer relative to a reference axis, enabling comparison with the results obtained from X-ray scattering experiments and molecular dynamic simulations. Subsequently, the orientation of the interlayer water dipole and surface hydroxyls with respect to the normal of the clay layer was experimentally determined, showing good agreement with molecular simulations. This methodology may provide quantitative insights into the molecular-level description of interfacial processes between organic molecules and clay minerals.

10.
J Nutr ; 150(1): 99-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511877

RESUMO

BACKGROUND: Intake of total fat is linked to obesity and inversely associated with bone density in humans. Epidemiologic and animal studies show that long-chain n-3 (ω-3) PUFAs supplied as fish oil (FO) are beneficial to skeletal health. OBJECTIVE: This study tested the hypothesis that increasing dietary FO would decrease adiposity and improve bone-related outcomes in growing obese mice. METHODS: Male C57BL/6 mice at 6 wk old were assigned to 6 treatment groups and fed either a normal-fat diet (3.85 kcal/g and 10% energy as fat) or a high-fat diet (HF; 4.73 kcal/g and 45% energy as fat) containing either 0%, 3%, or 9% energy as FO (0FO, 3FO, and 9FO, respectively) ad libitum for 6 mo. Bone structure, body composition, and serum bone-related cytokines were measured. RESULTS: The HF diet increased the expression of the adipose tissue tumor necrosis factor α (Tnfa) and serum concentrations of leptin and tartrate-resistant acid phosphatase (TRAP), and decreased serum concentrations of osteocalcin and bone-specific alkaline phosphatase (P < 0.05). FO decreased fat mass (P < 0.05), serum TRAP (P < 0.05), and adipose tissue Tnfa expression (P < 0.01). Bone content of long-chain n-3 PUFAs was increased and n-6 PUFAs were decreased with the elevation in dietary FO content (P < 0.01). Compared with mice fed 9FO, animals fed 3FO had higher femoral bone volume/total volume (25%), trabecular number (23%), connectivity density (82%), and bone mass of second lumbar vertebrae (12%) and lower femoral trabecular separation (-19%). Mice fed the 3FO HF diet had 42% higher bone mass than those fed the 0FO HF diet. CONCLUSIONS: These data indicate increasing dietary FO ≤3% energy can decrease adiposity and mitigate HF diet-induced bone deterioration in growing C57BL/6 mice possibly by reducing inflammation and bone resorption. FO at 9% diet energy had no further beneficial effects on bone of obese mice.


Assuntos
Adiposidade/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Óleos de Peixe/administração & dosagem , Animais , Peso Corporal , Ingestão de Energia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Nat Commun ; 10(1): 5456, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784523

RESUMO

The role of the preferential orientation of clay platelets on the properties of a wide range of natural and engineered clay-rich media is well established. However, a reference function for describing the orientation of clay platelets in these different materials is still lacking. Here, we conducted a systematic study on a large panel of laboratory-made samples, including different clay types or preparation methods. By analyzing the orientation distribution functions obtained by X-ray scattering, we identified a unique signature for the preferred orientation of clay platelets and determined an associated reference orientation function using the maximum-entropy method. This new orientation distribution function is validated for a large set of engineered clay materials and for representative natural clay-rich rocks. This reference function has many potential applications where consideration of preferred orientation is required, including better long-term prediction of water and solute transfer or improved designs for new generations of innovative materials.

12.
Materials (Basel) ; 11(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322150

RESUMO

The anisotropic properties of clay-rich porous media have significant impact on the directional dependence of fluids migration in environmental and engineering sciences. This anisotropy, linked to the preferential orientation of flat anisometric clay minerals particles, is studied here on the basis of the simulation of three-dimensional packings of non-interacting disks, using a sequential deposition algorithm under a gravitational field. Simulations show that the obtained porosities fall onto a single master curve when plotted against the anisotropy value. This finding is consistent with results from sedimentation experiments using polytetrafluoroethylene (PTFE) disks and subsequent extraction of particle anisotropy through X-ray microtomography. Further geometrical analyses of computed porous media highlight that both particle orientation and particle aggregation are responsible of the evolution of porosity as a function of anisotropy. Moreover, morphological analysis of the porous media using chord length measurements shows that the anisotropy of the pore and solid networks can be correlated with particle orientation. These results indicate that computed porous media, mimicking the organization of clay minerals, can be used to shed light on the anisotropic properties of fluid transfer in clay-based materials.

13.
Langmuir ; 34(40): 12206-12213, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30203976

RESUMO

The interaction of methyl orange dye with a layered double hydroxide colloidal material is investigated using real-time polarization-resolved second-harmonic scattering (SHS). Interlayer charge compensating anion exchange is studied from initial carbonate or nitrate anions to methyl orange negatively charged dye. A theoretical model, taking into account the field retardation effect, is presented to simulate the polarization-resolved SHS experiments. Various geometrical dye configurations inside or around the host material have been modeled. A comparison with the experimental data permits to give a microscopic description of the dye organization and its time evolution during the intercalation process in the material.

14.
J Nutr ; 147(10): 1909-1916, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28814530

RESUMO

Background: Chronic inflammation is associated with increased bone resorption and is linked to osteopenia, or low bone mass. Obesity is also associated with low-grade chronic upregulation of inflammatory cytokines.Objective: This study investigated the effect of high-fat (HF) diet-induced obesity on bone structure changes in growing mice with existing systemic chronic inflammation induced by low-dose, slow-release lipopolysaccharide (LPS).Methods: Forty-eight 6-wk-old female C57BL/6 mice were randomly assigned to 4 treatment groups (n = 12/group) in a 2 × 2 factorial design-control (placebo) or LPS treatment (1.5 µg/d)-and consumed either a normal-fat (NF, 10% of energy as fat) or an HF (45% of energy as fat) diet ad libitum for 13 wk. Bone structure, serum biomarkers of bone turnover, and osteoclast differentiation were measured.Results: No alterations were observed in final body weights, fat mass, or lean mass in response to LPS treatment. LPS treatment increased serum concentration of tartrate-resistant acid phosphatase (TRAP, a bone resorption marker) and bone marrow osteoclast differentiation and decreased femoral and lumbar vertebral bone volume (BV):total volume (TV) by 25% and 24%, respectively, compared with the placebo. Mice fed the HF diet had greater body weight at the end of the study (P < 0.01) due to increased fat mass (P < 0.01) than did mice fed the NF diet. The HF diet increased serum TRAP concentration, bone marrow osteoclast differentiation, and expression of tumor necrosis factor α, interleukin 1ß and interleukin 6 in adipose tissue. Compared with the NF diet, the HF diet decreased BV:TV by 10% and 8% at femur and lumbar vertebrae, respectively, and the HF diet was detrimental to femoral and lumbar vertebral bone structure with decreased trabecular number and increased trabecular separation and structure model index.Conclusion: Results suggest that HF diets and systemic chronic inflammation have independent negative effects on bone structure in mice.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/etiologia , Osso e Ossos/efeitos dos fármacos , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Inflamação/complicações , Obesidade/complicações , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Doenças Ósseas Metabólicas/metabolismo , Remodelação Óssea , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Diferenciação Celular , Gorduras na Dieta/administração & dosagem , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Inflamação/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipopolissacarídeos , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Distribuição Aleatória , Fosfatase Ácida Resistente a Tartarato/sangue , Fator de Necrose Tumoral alfa/sangue
15.
Nutr Res ; 36(4): 320-327, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27001277

RESUMO

Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice.


Assuntos
Densidade Óssea/fisiologia , Dieta Hiperlipídica , Estradiol/sangue , Ovariectomia , Aumento de Peso , Animais , Dieta , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia , Osteoporose/fisiopatologia
16.
Water Res ; 62: 29-39, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24934322

RESUMO

The reduction of nitrate anions by a mixed Fe(II)-Fe(III) carbonated green rust (GR) in aqueous medium is studied as a function of the initial pH and the initial concentrations of iron, phosphate and nitrate. The influence of these parameters on the fraction of nitrate removed and the production of ammonium is investigated by the help of statistical experimental designs. The goal is to determine experimental conditions that maximize the fraction of NO3(-) removed and concomitantly minimize the production of NH4(+). Increasing the phosphate concentration relatively to the initial Fe(II) concentration inhibits the reduction of nitrate probably due to a surface saturation of the lateral sites of the GR crystals. The kinetics of the reaction is greatly enhanced by increasing the initial pH at 10.5, however it leads to a global increase of the NH4(+) production. A partial saturation of the surface sites by phosphate leads to a global decrease of selectivity of the reaction towards ammonium. The evolution of the ratio of the NH4(+) concentration to the Fe(II) concentration confirms that the NO3(-) species are only partially transformed into ammonium. Interestingly at an initial pH of 7.5, the selectivity of the reaction towards NH4(+) is often lower than ∼30%. The reduction of nitrate by carbonated GR differs from the behavior of other GRs incorporating Cl(-), F(-) and SO4(2-) anions that fully transform nitrate into ammonium. Finally, if GR is intended to be used during a passive water denitrification process, complementary dephosphatation and ammonium treatments should be considered.


Assuntos
Compostos de Amônio/química , Carbonatos/química , Ferro/química , Nitratos/isolamento & purificação , Fosfatos/química , Ânions , Cinética , Oxirredução
17.
Environ Sci Technol ; 48(7): 3742-51, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24605878

RESUMO

Green rusts (GRs) are mixed Fe(II)-Fe(III) hydroxides with a high reactivity toward organic and inorganic pollutants. GRs can be produced from ferric reducing or ferrous oxidizing bacterial activities. In this study, we investigated the capability of Klebsiella mobilis to produce iron minerals in the presence of nitrate and ferrous iron. This bacterium is well-known to reduce nitrate using an organic carbon source as electron donor but is unable to enzymatically oxidize Fe(II) species. During incubation, GR formation occurred as a secondary iron mineral precipitating on cell surfaces, resulting from Fe(II) oxidation by nitrite produced via bacterial respiration of nitrate. For the first time, we demonstrate GR formation by indirect microbial oxidation of Fe(II) (i.e., a combination of biotic/abiotic processes). These results therefore suggest that nitrate-reducing bacteria can potentially contribute to the formation of GR in natural environments. In addition, the chemical reduction of nitrite to ammonium by GR is observed, which gradually turns the GR into the end-product goethite. The nitrogen mass-balance clearly demonstrates that the total amount of ammonium produced corresponds to the quantity of bioreduced nitrate. These findings demonstrate how the activity of nitrate-reducing bacteria in ferrous environments may provide a direct link between the biogeochemical cycles of nitrogen and iron.


Assuntos
Processos Heterotróficos , Compostos de Ferro/metabolismo , Ferro/metabolismo , Klebsiella/metabolismo , Minerais/metabolismo , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Biodegradação Ambiental , Cristalização , Elétrons , Klebsiella/citologia , Klebsiella/ultraestrutura , Ácido Láctico/metabolismo , Nitritos/metabolismo , Oxirredução , Análise Espectral Raman , Fatores de Tempo
18.
Dalton Trans ; 42(44): 15687-98, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24048362

RESUMO

The hydrolytic behavior of mixed metallic solutions containing Ni(2+)-Fe(3+) and Mg(2+)-Fe(3+) has been studied with respect to the relative proportion of the divalent and trivalent cations in solution as well as the quantity of NaOH added. The combination of X-ray diffraction and vibrational spectroscopy provides a deep insight into both the nature of the phases and the structure of the formed LDH. The relative abundance of each phase is determined by using a mass balance diagram and is in good agreement with the solid characterization. We showed that the slow hydrolysis of mixed metallic solutions involved first the precipitation of Fe(3+) to form an akaganeite phase, and then the formation of a precursor on the iron oxyhydroxide surface, which transforms into LDH by diffusion of Fe(III) species from the akaganeite phase to the precursor. Interestingly, whatever the iron content in solution, the same fraction of Fe(III) is incorporated into the LDH phase which is correlated to the nature of the formed precursor. For Ni(2+)-Fe(3+) solution, the precursor is an α-Ni hydroxide, which formed a LDH phase with a very low iron content (x(layer) = 0.1), but a high charge density provided by structural hydroxyl default. This result unambiguously demonstrated that the LDH phase is formed from the precursor structure. For Mg(2+)-Fe(3+) solution, the precursor is structurally equivalent to a ß-Mg(OH)2 phase, leading to a LDH with a higher x(layer) value of ~0.2. In both cases, at the end of the titration experiments, a mixture of different phases was systematically observed. Hydrothermal treatment allows the recovery of a pure LDH phase exclusively for the Ni(2+)-Fe(3+) solution.

19.
J Nutr ; 142(8): 1526-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22739365

RESUMO

Selenium (Se), an essential mineral, plays a major role in cellular redox status and may have beneficial effects on bone health. The objective of this study was to determine whether Se deficiency affects redox status and bone microarchitecture in a mouse model. Thirty-three male C57BL/6J mice, 18 wk old, were randomly assigned to 3 groups. Mice were fed either a purified, Se-deficient diet (SeDef) containing ∼0.9 µg Se/kg diet, or Se-adequate diets containing ∼100 µg Se/kg diet from either selenomethionine (SeMet) or pinto beans (SeBean) for 4 mo. The Se concentration, glutathione peroxidase (GPx1) activity, and GPx1 mRNA in liver were lower in the SeDef group than in the SeMet or SeBean group. The femoral trabecular bone volume/total volume and trabecular number were less, whereas trabecular separation was greater, in the SeDef group than in either the SeMet or SeBean group (P < 0.05). Bone structural parameters between the SeMet and SeBean groups did not differ. Furthermore, Serum concentrations of C-reactive protein, tartrate-resistant acid phosphatase, and intact parathyroid hormone were higher in the SeDef group than in the other 2 groups. These findings demonstrate that Se deficiency is detrimental to bone microarchitecture by increasing bone resorption, possibly through decreasing antioxidative potential.


Assuntos
Antioxidantes/metabolismo , Densidade Óssea/efeitos dos fármacos , Selênio/deficiência , Animais , Peso Corporal , Regulação Enzimológica da Expressão Gênica , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Glutationa Peroxidase GPX1
20.
Ann N Y Acad Sci ; 1240: E31-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22360827

RESUMO

Proinflammatory cytokines are primary mediators of bone loss in estrogen deficiency. This study determined whether alpha-1 antitrypsin (AAT), a multifunctional protein with proteinase inhibitor and anti-inflammatory activities, mitigates bone loss induced by estrogen deficiency. Mice were either sham-operated or ovariectomized and injected with either AAT or phosphate buffered saline (PBS). Ovariectomy resulted in decreased wet uterus weight, significant bone loss, increased serum leptin concentrations, and higher body weight compared to sham. AAT injection increased tibial trabecular bone volume/total volume and trabecular thickness compared to PBS injection in ovariectomized mice. Ovariectomized mice with AAT treatment had higher uterus weight, lower serum osteocalcin levels, fewer bone marrow tartrate-resistant acid phosphatase-positive osteoclasts, and less expression of calcitonin receptor in bone than that in PBS-injected mice. These data demonstrate that AAT mitigates ovariectomy-induced bone loss in mice possibly through inhibiting osteoclast activity and bone resorption.


Assuntos
Osteoporose/prevenção & controle , Ovariectomia , Inibidores de Serina Proteinase/uso terapêutico , alfa 1-Antitripsina/uso terapêutico , Animais , Quimioprevenção , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Osteoporose/etiologia , Inibidores de Serina Proteinase/farmacologia , Útero/efeitos dos fármacos , alfa 1-Antitripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA