Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Exp Neurol ; 373: 114673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163475

RESUMO

Hypoxic-ischemic encephalopathy due to insufficient oxygen delivery to brain tissue is a leading cause of death or severe morbidity in neonates. The early recognition of the most severely affected individuals remains a clinical challenge. We hypothesized that hypoxic-ischemic injury can be detected using PET radiotracers for hypoxia ([18F]EF5), glucose metabolism ([18F]FDG), and inflammation ([18F]F-DPA). METHODS: A preclinical model of neonatal hypoxic-ischemic brain injury was made in 9-d-old rat pups by permanent ligation of the left common carotid artery followed by hypoxia (8% oxygen and 92% nitrogen) for 120 min. In vivo PET imaging was performed immediately after injury induction or at different timepoints up to 21 d later. After imaging, ex vivo brain autoradiography was performed. Brain sections were stained with cresyl violet to evaluate the extent of the brain injury and to correlate it with [18F]FDG uptake. RESULTS: PET imaging revealed that all three of the radiotracers tested had significant uptake in the injured brain hemisphere. Ex vivo autoradiography revealed high [18F]EF5 uptake in the hypoxic hemisphere immediately after the injury (P < 0.0001), decreasing to baseline even 1 d postinjury. [18F]FDG uptake was highest in the injured hemisphere on the day of injury (P < 0.0001), whereas [18F]F-DPA uptake was evident after 4 d (P = 0.029), peaking 7 d postinjury (P < 0.0001), and remained significant 21 d after the injury. Targeted evaluation demonstrated that [18F]FDG uptake measured by in vivo imaging 1 d postinjury correlated positively with the brain volume loss detected 21 d later (r = 0.72, P = 0.028). CONCLUSION: Neonatal hypoxic-ischemic brain injury can be detected using PET imaging. Different types of radiotracers illustrate distinct phases of hypoxic brain damage. PET may be a new useful technique, worthy of being explored for clinical use, to predict and evaluate the course of the injury.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Ratos , Animais , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Oxigênio , Animais Recém-Nascidos
2.
J Cereb Blood Flow Metab ; 44(6): 1024-1038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38112197

RESUMO

Perinatal hypoxic-ischaemic encephalopathy (HIE) is the leading cause of irreversible brain damage resulting in serious neurological dysfunction among neonates. We evaluated the feasibility of positron emission tomography (PET) methodology with 15O-labelled gases without intravenous or tracheal cannulation for assessing temporal changes in cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in a neonatal HIE rat model. Sequential PET scans with spontaneous inhalation of 15O-gases mixed with isoflurane were performed over 14 days after the hypoxic-ischaemic insult in HIE pups and age-matched controls. CBF and CMRO2 in the injured hemispheres of HIE pups remarkably decreased 2 days after the insult, gradually recovering over 14 days in line with their increase found in healthy controls according to their natural maturation process. The magnitude of hemispheric tissue loss histologically measured after the last PET scan was significantly correlated with the decreases in CBF and CMRO2.This fully non-invasive imaging strategy may be useful for monitoring damage progression in neonatal HIE and for evaluating potential therapeutic outcomes.


Assuntos
Animais Recém-Nascidos , Circulação Cerebrovascular , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Ratos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Oxigênio/metabolismo , Ratos Sprague-Dawley
3.
EJNMMI Res ; 13(1): 21, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913049

RESUMO

BACKGROUND: In the development of new 18F-labelled tracers, it is important to assess the amount of released [18F]fluoride taken up in the bones of experimental animals because all 18F-labelled PET-tracers are prone, to lesser or higher degree, to undergo defluorination, with subsequent release of [18F]fluoride during scanning. However, the pharmacokinetics of [18F]fluoride in bones and other organs of healthy rats have not been well documented in a comprehensive manner. We aimed to study pharmacokinetics of [18F]NaF in rats in order to increase our understanding of the biodistribution of [18F]fluoride originating from defluorination of 18F-labelled tracers. We studied [18F]fluoride uptake in Sprague Dawley rat bones, including the epiphyseal parts of the tibia and radius, the mandible, ilium, lumbar vertebrae, costochondral joints, tibia, radius, and ribs, with 60-min in vivo PET/CT imaging. Kinetic parameters, K1, Ki, Ki/K1, and k3 were calculated with a three-compartment model. In addition, separate groups of male and female rats were studied with ex vivo bone and soft tissue harvesting and gamma counting over a 6-h period. RESULTS: [18F]fluoride perfusion and uptake varied among the different bones. [18F]fluoride uptake was higher in trabecular bones, due to high perfusion and osteoblastic activity, compared to cortical bones. In soft tissues, the organ-to-blood uptake ratios increased over time in the eyes, lungs, brain, testes, and ovaries during the 6 h study period. CONCLUSION: Understanding the pharmacokinetics of [18F]fluoride in various bones and soft tissues is highly useful for assessing 18F-labelled radiotracers that release [18F]fluoride.

4.
Front Oncol ; 13: 1298333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162485

RESUMO

Background: Treatment resistance and relapse are common problems in head and neck squamous cell carcinoma (HNSCC). Except for p16, no clinically accepted prognostic biomarkers are available for HNSCC. New biomarkers predictive of recurrence and survival are crucial for optimal treatment planning and patient outcome. High translocator protein (TSPO) levels have been associated with poor survival in cancer, but the role of TSPO has not been extensively evaluated in HNSCC. Materials and methods: TSPO expression was determined in a large population-based tissue microarray cohort including 611 patients with HNSCC and evaluated for survival in several clinicopathological subgroups. A TCGA HNSCC cohort was used to further analyze the role of TSPO in HNSCC. Results: TSPO expression was downregulated in more aggressive tumors. Low TSPO expression associated with worse 5-year survival and was an independent prognostic factor for disease-specific survival. Subgroup analyses showed that low TSPO expression associated with worse survival particularly in p16-positive oropharyngeal cancer. In silico analyses supported the prognostic role of TSPO. Cellular respiration had the highest significance in pathway analyses for genes expressed positively with TSPO. Conclusion: Decreased TSPO expression associates with poor prognosis in HNSCC. TSPO is a prognostic biomarker in HNSCC to potentially guide treatment stratification especially in p16-positive oropharyngeal cancer.

5.
Mol Cancer Ther ; 21(7): 1236-1245, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364610

RESUMO

Identification of ovarian cancer patient subpopulations with increased sensitivity to targeted therapies could offer significant clinical benefit. We report that 22% of the high-grade ovarian cancer tumors at diagnosis express CIP2A oncoprotein at low levels. Furthermore, regardless of their significantly lower likelihood of disease relapse after standard chemotherapy, a portion of relapsed tumors retain their CIP2A-deficient phenotype. Through a screen for therapeutics that would preferentially kill CIP2A-deficient ovarian cancer cells, we identified reactive oxygen species inducer APR-246, tested previously in ovarian cancer clinical trials. Consistent with CIP2A-deficient ovarian cancer subtype in humans, CIP2A is dispensable for development of MISIIR-Tag-driven mouse ovarian cancer tumors. Nevertheless, CIP2A-null ovarian cancer tumor cells from MISIIR-Tag mice displayed APR-246 hypersensitivity both in vitro and in vivo. Mechanistically, the lack of CIP2A expression hypersensitizes the ovarian cancer cells to APR-246 by inhibition of NF-κB activity. Accordingly, combination of APR-246 and NF-κB inhibitor compounds strongly synergized in killing of CIP2A-positive ovarian cancer cells. Collectively, the results warrant consideration of clinical testing of APR-246 for CIP2A-deficient ovarian cancer tumor subtype patients. Results also reveal CIP2A as a candidate APR-246 combination therapy target for ovarian cancer.


Assuntos
NF-kappa B , Neoplasias Ovarianas , Animais , Autoantígenos/genética , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Quinuclidinas
6.
Mol Imaging Biol ; 24(4): 641-650, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35303205

RESUMO

PURPOSE: Recent studies have linked activated spinal glia to neuropathic pain. Here, using a positron emission tomography (PET) scanner with high spatial resolution and sensitivity, we evaluated the feasibility and sensitivity of N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide ([18F]F-DPA) imaging for detecting spinal cord microglial activation after partial sciatic nerve ligation (PSNL) in rats. PROCEDURES: Neuropathic pain was induced in rats (n = 20) by PSNL, and pain sensation tests were conducted before surgery and 3 and 7 days post-injury. On day 7, in vivo PET imaging and ex vivo autoradiography were performed using [18F]F-DPA or [11C]PK11195. Ex vivo biodistribution and PET imaging of the removed spinal cord were carried out with [18F]F-DPA. Sham-operated and PK11195-pretreated animals were also examined. RESULTS: Mechanical allodynia was confirmed in the PSNL rats from day 3 through day 7. Ex vivo autoradiography showed a higher lesion-to-background uptake with [18F]F-DPA compared with [11C]PK11195. Ex vivo PET imaging of the removed spinal cord showed [18F]F-DPA accumulation in the inflammation site, which was immunohistochemically confirmed to coincide with microglia activation. Pretreatment with PK11195 eliminated the uptake. The SUV values of in vivo [18F]F-DPA and [11C]PK11195 PET were not significantly increased in the lesion compared with the reference region, and were fivefold higher than the values obtained from the ex vivo data. Ex vivo biodistribution revealed a twofold higher [18F]F-DPA uptake in the vertebral body compared to that seen in the bone from the skull. CONCLUSIONS: [18F]F-DPA aided visualization of the spinal cord inflammation site in PSNL rats on ex vivo autoradiography and was superior to [11C]PK11195. In vivo [18F]F-DPA PET did not allow for visualization of tracer accumulation even using a high-spatial-resolution PET scanner. The main reason for this result was due to insufficient SUVs in the spinal cord region as compared with the background noise, in addition to a spillover from the vertebral body.


Assuntos
Microglia , Neuralgia , Animais , Radioisótopos de Flúor , Microglia/patologia , Neuralgia/diagnóstico por imagem , Neuralgia/patologia , Tomografia por Emissão de Pósitrons/métodos , Pirazóis , Pirimidinas , Ratos , Medula Espinal/diagnóstico por imagem , Distribuição Tecidual
7.
Cell Mol Life Sci ; 79(1): 10, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951664

RESUMO

Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Colo/patologia , Células Epiteliais/metabolismo , Deleção de Genes , Marcação de Genes , Intestinos/patologia , Queratina-8/genética , Envelhecimento/patologia , Animais , Diferenciação Celular , Proliferação de Células , Diarreia/complicações , Diarreia/patologia , Regulação para Baixo , Fluordesoxiglucose F18/metabolismo , Células Caliciformes/metabolismo , Inflamação/patologia , Integrases/metabolismo , Queratina-8/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Permeabilidade , Fenótipo , Tomografia por Emissão de Pósitrons
8.
BMC Cancer ; 21(1): 990, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479492

RESUMO

BACKGROUND: A low tissue oxygen level, < 1% O2, is a typical characteristic inside of solid tumors in head and neck cancer (HNSCC) affecting a wide array of cell populations, such as macrophages. However, the mechanisms of how hypoxia influences macrophages are not yet fully elucidated. Our research aimed to study the effect of soluble mediators produced by hypoxic cancer cells on macrophage polarization. Furthermore, we studied the effect of a hypoxic microenvironment on the expression of tumorigenic toll-like receptor 9 (TLR9) and the consecutive macrophage polarization. METHODS: Conditioned media (CMNOX or CMHOX) from cell lines UT-SCC-8, UT-SCC-74A, FaDu, MDA-MB-231 and HaCat cultured under normoxic (21% O2) and hypoxic (1% O2) conditions were used to polarize human monocyte-derived macrophages. Macrophage polarization was measured by flow cytometry and the production of cytokine mRNA using Taqman qPCR. To study the role of TLR9 in macrophage polarization, the lentiviral CRISPR/Cas9 method was used to establish a stable FaDuTLR9def clone. RESULTS: Our results demonstrate that the soluble mediators produced by the cancer cells under normoxia polarize macrophages towards a hybridized M1/M2a/M2c phenotype. Furthermore, the results suggest that hypoxia has a limited role in altering the array of cancer-produced soluble factors affecting macrophage polarization and cytokine production. Our data also indicates that increased expression of TLR9 due to hypoxia in malignant cells does not markedly influence the polarization of macrophages. TLR9 transcriptional response to hypoxia is dissimilar to a HIF1-α-regulated LDH-A. This may indicate a context-dependent expression of TLR9 under hypoxia. CONCLUSIONS: HNSCC cell lines affect both macrophage activity (polarization) and functionality (cytokines), but with exception to iNOS expression, the effects appear independent of hypoxia and TLR9.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Hipóxia/fisiopatologia , Imunomodulação , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Receptor Toll-Like 9/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia
9.
Cancers (Basel) ; 13(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067046

RESUMO

Prostate cancer is the second most common cancer type in men globally. Although the prognosis for localized prostate cancer is good, no curative treatments are available for metastatic disease. Better diagnostic methods could help target therapies and improve the outcome. Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein that is overexpressed on malignant prostate tumor cells and correlates with the aggressiveness of the disease. PSMA is a clinically validated target for positron emission tomography (PET) imaging-based diagnostics in prostate cancer, and during recent years several therapeutics have been developed based on PSMA expression and activity. The expression of PSMA in prostate cancer can be very heterogeneous and some metastases are negative for PSMA. Determinants that dictate clinical responses to PSMA-targeting therapeutics are not well known. Moreover, it is not clear how to manipulate PSMA expression for therapeutic purposes and develop rational treatment combinations. A deeper understanding of the biology behind the use of PSMA would help the development of theranostics with radiolabeled compounds and other PSMA-based therapeutic approaches. Along with PSMA several other targets have also been evaluated or are currently under investigation in preclinical or clinical settings in prostate cancer. Here we critically elaborate the biology and scientific rationale behind the use of PSMA and other targets in the detection and therapeutic targeting of metastatic prostate cancer.

10.
Cancer Res ; 81(16): 4319-4331, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34145035

RESUMO

Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.


Assuntos
Autoantígenos/metabolismo , Neoplasias da Mama/metabolismo , Carcinogênese , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitose , Mutação , Proteoma , Recombinação Genética , Transdução de Sinais
11.
Theranostics ; 11(3): 1147-1161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391526

RESUMO

Rationale: Olfactory ensheathing cell (OEC) transplantation has emerged as a promising therapy for spinal cord injury (SCI) repair. In the present study, we explored the possible mechanisms of OECs transplantation underlying neuroinflammation modulation. Methods: Spinal cord inflammation after intravenous OEC transplantation was detected in vivo and ex vivo by translocator protein PET tracer [18F]F-DPA. To track transplanted cells, OECs were transduced with enhanced green fluorescent protein (eGFP) and HSV1-39tk using lentiviral vector and were monitored by fluorescence imaging and [18F]FHBG study. Protein microarray analysis and ELISA studies were employed to analyze differential proteins in the injured spinal cord after OEC transplantation. The anti-inflammation function of the upregulated protein was also proved by in vitro gene knocking down experiments and OECs/microglia co-culture experiment. Results: The inflammation in the spinal cord was decreased after OEC intravenous transplantation. The HSV1-39tk-eGFP-transduced OECs showed no accumulation in major organs and were found at the injury site. After OEC transplantation, in the spinal cord tissues, the interleukin-1 receptor antagonist (IL-1Ra) was highly upregulated while many chemokines, including pro-inflammatory chemokines IL-1α, IL-1ß were downregulated. In vitro studies confirmed that lipopolysaccharide (LPS) stimulus triggered OECs to secrete IL-1Ra. OECs significantly suppressed LPS-stimulated microglial activity, whereas IL-1Ra gene knockdown significantly reduced their ability to modulate microglial activity. Conclusion: The OECs that reached the lesion site were activated by the release of pro-inflammatory cytokines from activated microglia in the lesion site and secreted IL-1Ra to reduce neuroinflammation. Intravenous transplantation of OECs has high therapeutic effectiveness for the treatment of SCI via the secretion of IL-1Ra to reduce neuroinflammation.


Assuntos
Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Transplante de Células/métodos , Células Cultivadas , Quimiocinas/metabolismo , Regulação para Baixo/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia
12.
Eur J Nucl Med Mol Imaging ; 48(5): 1312-1326, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340054

RESUMO

BACKGROUND: Many malignant tumours have increased TSPO expression, which has been related to a poor prognosis. TSPO-PET tracers have not comprehensively been evaluated in peripherally located tumours. This study aimed to evaluate whether N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ([18F]F-DPA) can reflect radiotherapy (RT)-induced changes in TSPO activity in head and neck squamous cell carcinoma (HNSCC). METHODS: RT was used to induce inflammatory responses in HNSCC xenografts and cells. [18F]F-DPA uptake was measured in vivo in non-irradiated and irradiated tumours, followed by ex vivo biodistribution, autoradiography, and radiometabolite analysis. In vitro studies were performed in parental and TSPO-silenced (TSPO siRNA) cells. TSPO protein and mRNA expression, as well as tumour-associated macrophages (TAMs), were also assessed. RESULTS: In vivo imaging and ex vivo measurement revealed significantly higher [18F]F-DPA uptake in irradiated, compared to non-irradiated tumours. In vitro labelling studies with cells confirmed this finding, whereas no effect of RT on [18F]F-DPA uptake was detected in TSPO siRNA cells. Radiometabolite analysis showed that the amount of unchanged [18F]F-DPA in tumours was 95%, also after irradiation. PK11195 pre-treatment reduced the tumour-to-blood ratio of [18F]F-DPA by 73% in xenografts and by 88% in cells. TSPO protein and mRNA levels increased after RT, but were highly variable. The proportion of M1/M2 TAMs decreased after RT, whereas the proportion of monocytes and migratory monocytes/macrophages increased. CONCLUSIONS: [18F]F-DPA can detect changes in TSPO expression levels after RT in HNSCC, which does not seem to reflect inflammation. Further studies are however needed to clarify the physiological mechanisms regulated by TSPO after RT.


Assuntos
Radioisótopos de Flúor , Neoplasias de Cabeça e Pescoço , Animais , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons , Pirazóis , Pirimidinas , Distribuição Tecidual
13.
Front Physiol ; 11: 584661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329033

RESUMO

PURPOSE: Rac1 and its downstream target PAK1 are novel regulators of insulin and exercise-induced glucose uptake in skeletal muscle. However, it is not yet understood how different training intensities affect the expression of these proteins. Therefore, we studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on Rac1 and PAK1 expression in fast-type (gastrocnemius, GC) and slow-type (soleus, SOL) muscles in rats after HIIT and MICT swimming exercises. METHODS: The mRNA expression was determined using qPCR and protein expression levels with reverse-phase protein microarray (RPPA). RESULTS: HIIT significantly decreased Rac1 mRNA expression in GC compared to MICT (p = 0.003) and to the control group (CON) (p = 0.001). At the protein level Rac1 was increased in GC in both training groups, but only the difference between HIIT and CON was significant (p = 0.02). HIIT caused significant decrease of PAK1 mRNA expression in GC compared to MICT (p = 0.007) and to CON (p = 0.001). At the protein level, HIIT increased PAK1 expression in GC compared to MICT and CON (by ∼17%), but the difference was not statistically significant (p = 0.3, p = 0.2, respectively). There were no significant differences in the Rac1 or PAK1 expression in SOL between the groups. CONCLUSION: Our results indicate that HIIT, but not MICT, decreases Rac1 and PAK1 mRNA expression and increases the protein expression of especially Rac1 but only in fast-type muscle. These exercise training findings may reveal new therapeutic targets to treat patients with metabolic diseases.

14.
EJNMMI Res ; 10(1): 155, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301074

RESUMO

BACKGROUND: We investigated the image quality of 11C, 68Ga, 18F and 89Zr, which have different positron fractions, physical half-lifes and positron ranges. Three small animal positron emission tomography/computed tomography (PET/CT) systems were used in the evaluation, including the Siemens Inveon, RAYCAN X5 and Molecubes ß-cube. The evaluation was performed on a single scanner level using the national electrical manufacturers association (NEMA) image quality phantom and analysis protocol. Acquisitions were performed with the standard NEMA protocol for 18F and using a radionuclide-specific acquisition time for 11C, 68Ga and 89Zr. Images were assessed using percent recovery coefficient (%RC), percentage standard deviation (%STD), image uniformity (%SD), spill-over ratio (SOR) and evaluation of image quantification. RESULTS: 68Ga had the lowest %RC (< 62%) across all systems. 18F had the highest maximum %RC (> 85%) and lowest %STD for the 5 mm rod across all systems. For 11C and 89Zr, the maximum %RC was close (> 76%) to the %RC with 18F. A larger SOR were measured in water with 11C and 68Ga compared to 18F on all systems. SOR in air reflected image reconstruction and data correction performance. Large variation in image quantification was observed, with maximal errors of 22.73% (89Zr, Inveon), 17.54% (89Zr, RAYCAN) and - 14.87% (68Ga, Molecubes). CONCLUSIONS: The systems performed most optimal in terms of NEMA image quality parameters when using 18F, where 11C and 89Zr performed slightly worse than 18F. The performance was least optimal when using 68Ga, due to large positron range. The large quantification differences prompt optimization not only by terms of image quality but also quantification. Further investigation should be performed to find an appropriate calibration and harmonization protocol and the evaluation should be conducted on a multi-scanner and multi-center level.

15.
J Gastrointest Surg ; 24(12): 2838-2848, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31823326

RESUMO

BACKGROUND: Adhesion formation contributes to postoperative complications in abdominal and gynaecological surgery. Thus far, the prevention and treatment strategies have focused on mechanical barriers in solid and liquid form, but these methods are not in routine use. As autologous fat grafting has become popular in treatment of hypertrophic scars because of its immunomodulatory effects, we postulated that fat grafting could also prevent peritoneal adhesion through similar mechanisms. METHODS: This was a control versus intervention study to evaluate the effect of fat grafting in the prevention on peritoneal adhesion formation. An experimental mouse model for moderate and extensive peritoneal adhesions was used (n = 4-6 mice/group). Adhesions were induced mechanically, and a free epididymal fat graft from wild type or CAG-DsRed mice was injected preperitoneally immediately after adhesion induction. PET/CT imaging and scaling of the adhesions were performed, and samples were taken for further analysis at 7 and 30 days postoperation. Macrophage phenotyping was further performed from peritoneal lavage samples, and the expression of inflammatory cytokines and mesothelial layer recovery were analysed from peritoneal tissue samples. RESULTS: Fat grafting significantly inhibited the formation of adhesions. PET/CT results did not show prolonged inflammation in any of the groups. While the expression of anti-inflammatory and anti-fibrotic IL-10 was significantly increased in the peritoneum of the fat graft-treated group at 7 days, tissue-resident and repairing M2 macrophages could no longer be detected in the fat graft at this time point. The percentage of the continuous, healed peritoneum as shown by Keratin 8 staining was greater in the fat graft-treated group after 7 days. CONCLUSIONS: Fat grafting can inhibit the formation of peritoneal adhesions in mice. Our results suggest that fat grafting promotes the peritoneal healing process in a paracrine manner thereby enabling rapid regeneration of the peritoneal mesothelial cell layer.


Assuntos
Doenças Peritoneais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tecido Adiposo , Animais , Humanos , Camundongos , Doenças Peritoneais/etiologia , Doenças Peritoneais/prevenção & controle , Peritônio/patologia , Peritônio/cirurgia , Complicações Pós-Operatórias/patologia , Aderências Teciduais/etiologia , Aderências Teciduais/prevenção & controle
16.
J Bone Oncol ; 16: 100232, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30956945

RESUMO

Advanced breast cancer has a high incidence of bone metastases. In bone, breast cancer cells induce osteolytic or mixed bone lesions by inducing an imbalance in bone formation and resorption. Activated fibroblast growth factor receptors (FGFRs) are important in regulation of tumor growth and bone remodeling. In this study we used FGFR1 and FGFR2 gene amplifications containing human MFM223 breast cancer cells in an experimental xenograft model of breast cancer bone growth using intratibial inoculation technique. This model mimics bone metastases in breast cancer patients. The effects of an FGFR inhibitor, dovitinib dilactic acid (TKI258) on tumor growth and tumor-induced bone changes were evaluated. Cancer-induced bone lesions were smaller in dovitinib-treated mice as evaluated by X-ray imaging. Peripheral quantitative computed tomography imaging showed higher total and cortical bone mineral content and cortical bone mineral density in dovitinib-treated mice, suggesting better preserved bone mass. CatWalk gait analysis indicated that dovitinib-treated mice experienced less cancer-induced bone pain in the tumor-bearing leg. A trend towards decreased tumor growth and metabolic activity was observed in dovitinib-treated mice quantified by positron emission tomography imaging with 2-[18F]fluoro-2-deoxy-D-glucose at the endpoint. We conclude that dovitinib treatment decreased tumor burden, cancer-induced changes in bone, and bone pain. The results suggest that targeting FGFRs could be beneficial in breast cancer patients with bone metastases.

17.
Sci Rep ; 9(1): 20412, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892711

RESUMO

There is a substantial interest in the development of NK1 substance P antagonists as potential treatments for various neuropsychiatric and somatic disorders. The aim of this study was to determine whether [18F]SPA-RQ can be utilized as a tool for studying the whole body distribution and function of NK1 receptors in preclinical settings. The compound was injected into guinea pigs with or without premedication with a NK1 receptor antagonist (NK1A-2). For comparison, we included two rats in the study, as the affinity of antagonists for NK1 receptors is known to vary between species. The whole body biodistribution of the tracer was determined at several time points. The tracer showed specific binding in organs compatible with the known location of NK1-receptors. Premedication with a NK1 antagonist led to an inhibited uptake of [18F]SPA-RQ in several organs of guinea pigs, notably intestine, pancreas, urinary bladder, uterus, skin and lung. Specific binding was also seen in both cortex and striatum. In contrast, negligible specific binding was observed in the rat brain with [18F]SPA-RQ, whereas the tracer uptake in peripheral tissues was similar to that seen in guinea pigs. We conclude that [18F]SPA-RQ/PET is a useful tool to study the distribution and function of peripherally located NK1 receptors e.g. in different disease models.


Assuntos
Encéfalo/metabolismo , Receptores da Neurocinina-1/metabolismo , Imagem Corporal Total/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Cobaias , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Ratos , Distribuição Tecidual
18.
Plast Reconstr Surg Glob Open ; 6(6): e1804, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30276049

RESUMO

BACKGROUND: Fat grafting is commonly used when treating soft-tissue defects. However, much of the basic biology behind fat transfer is still uncovered. Adipocytes can be divided into energy storing white and energy burning brown adipose cells. It is now well known, that also adult humans have metabolically active brown adipose tissue (BAT) within white adipose tissue (WAT). Previously our group showed that transfer of metabolically inactive WAT into a new environment increased the metabolic activity of the fat grafts to resemble the activity in the recipient site and that different WAT depots have variation in the metabolic activity. This led us to speculate, whether the metabolic increase of the graft is a result of "browning" of the transferred WAT toward beige adipose tissue. METHODS: We investigated the metabolic and histological characteristics and BAT marker Ucp1 gene expression in different types of WAT grafts placed either in subcutaneous or muscle tissue in mice. Metabolic activity of the grafts was investigated by FDG-PET/CT at 4- and 12-week time-points. RESULTS: The glucose uptake of all transferred fat types was increased when compared with respective control WAT regardless of transfer location. Ucp1 gene and protein expression was increased in 4 of 15 intramuscularly placed fat graft samples and showed histological resemblance to BAT with multilocular cells. CONCLUSIONS: Grafting of metabolically inactive fat intramuscularly may induce browning of fat grafts toward more active beige adipose tissue. This opens up new research areas in exploiting fat grafting in metabolic diseases.

19.
Sci Rep ; 8(1): 6542, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695813

RESUMO

The use of long-lived positron emitters 64Cu or 61Cu for labelling of Affibody molecules may improve breast cancer patients' stratification for HER-targeted therapy. Previous animal studies have shown that the use of triaza chelators for 64Cu labelling of synthetic Affibody molecules is suboptimal. In this study, we tested a hypothesis that the use of cross-bridged chelator, CB-TE2A, in combination with Gly-Glu-Glu-Glu spacer for labelling of Affibody molecules with radiocopper would improve imaging contrast. CB-TE2A was coupled to the N-terminus of synthetic Affibody molecules extended either with a glycine (designation CB-TE2A-G-ZHER2:342) or Gly-Glu-Glu-Glu spacer (CB-TE2A-GEEE-ZHER2:342). Biodistribution and targeting properties of 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-CB-TE2A-GEEE-ZHER2:342 were compared in tumor-bearing mice with the properties of 64Cu-NODAGA-ZHER2:S1, which had the best targeting properties in the previous study. 64Cu-CB-TE2A-GEEE-ZHER2:342 provided appreciably lower uptake in normal tissues and higher tumor-to-organ ratios than 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-NODAGA-ZHER2:S1. The most pronounced was a several-fold difference in the hepatic uptake. At the optimal time point, 6 h after injection, the tumor uptake of 64Cu-CB-TE2A-GEEE-ZHER2:342 was 16 ± 6%ID/g and tumor-to-blood ratio was 181 ± 52. In conclusion, a combination of the cross-bridged CB-TE2A chelator and Gly-Glu-Glu-Glu spacer is preferable for radiocopper labelling of Affibody molecules and, possibly, other scaffold proteins having high renal re-absorption.

20.
Eur J Nucl Med Mol Imaging ; 45(2): 161-169, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29075831

RESUMO

PURPOSE: Hypoxia contributes to radiotherapy resistance and more aggressive behaviour of several types of cancer. This study was designed to evaluate the repeatability of intratumour uptake of the hypoxia tracer [18F]EF5 in paired PET/CT scans. METHODS: Ten patients with newly diagnosed head and neck cancer (HNC) received three static PET/CT scans before chemoradiotherapy: two with [18F]EF5 a median of 7 days apart and one with [18F]FDG. Metabolically active primary tumour volumes were defined in [18F]FDG images and transferred to co-registered [18F]EF5 images for repeatability analysis. A tumour-to-muscle uptake ratio (TMR) of 1.5 at 3 h from injection of [18F]EF5 was used as a threshold representing hypoxic tissue. RESULTS: In 10 paired [18F]EF5 PET/CT image sets, SUVmean, SUVmax, and TMR showed a good correlation with the intraclass correlation coefficients of 0.81, 0.85, and 0.87, respectively. The relative coefficients of repeatability for these parameters were 15%, 17%, and 10%, respectively. Fractional hypoxic volumes of the tumours in the repeated scans had a high correlation using the Spearman rank correlation test (r = 0.94). In a voxel-by-voxel TMR analysis between the repeated scans, the mean of Pearson correlation coefficients of individual patients was 0.65. The mean (± SD) difference of TMR in the pooled data set was 0.03 ± 0.20. CONCLUSION: Pretreatment [18F]EF5 PET/CT within one week shows high repeatability and is feasible for the guiding of hypoxia-targeted treatment interventions in HNC.


Assuntos
Etanidazol/análogos & derivados , Radioisótopos de Flúor , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Hidrocarbonetos Fluorados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hipóxia Tumoral , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA