Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Chem Theory Comput ; 20(1): 212-223, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109481

RESUMO

The process of osmosis, a fundamental phenomenon in life, drives water through a semipermeable membrane in response to a solute concentration gradient across this membrane. In vitro, osmotic shocks are often used to drive shape changes in lipid vesicles, for instance, to study fission events in the context of artificial cells. While experimental techniques provide a macroscopic picture of large-scale membrane remodeling processes, molecular dynamics (MD) simulations are a powerful tool to study membrane deformations at the molecular level. However, simulating an osmotic shock is a time-consuming process due to slow water diffusion across the membrane, making it practically impossible to examine its effects in classic MD simulations. In this article, we present Shocker, a Python-based MD tool for simulating the effects of an osmotic shock by selecting and relocating water particles across a membrane over the course of several pumping cycles. Although this method is primarily aimed at efficiently simulating volume changes in vesicles, it can also handle membrane tubes and double bilayer systems. Additionally, Shocker is force field-independent and compatible with both coarse-grained and all-atom systems. We demonstrate that our tool is applicable to simulate both hypertonic and hypotonic osmotic shocks for a range of vesicular and bilamellar setups, including complex multicomponent systems containing membrane proteins or crowded internal solutions.


Assuntos
Simulação de Dinâmica Molecular , Água , Pressão Osmótica , Difusão , Soluções , Água/metabolismo , Osmose
2.
Front Cell Dev Biol ; 11: 1214962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621774

RESUMO

Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication and inheritance of genetic material. By creating a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics, we investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve cell-scale chromosome structures that are realistic, we model the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. In addition, the conformations of the circular DNA must avoid overlapping with ribosomes identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory systems known to orchestrate chromosome segregation in other bacteria, its minimized genome retains essential loop-extruding structural maintenance of chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases. Through implementing the effects of these proteins in our simulations of replicating chromosomes, we find that they alone are sufficient for simultaneous chromosome segregation across all generations within nested theta structures. This supports previous studies suggesting loop-extrusion serves as a near-universal mechanism for chromosome organization within bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion under the influence of the chromosome and calculate in silico chromosome contact maps that capture inter-daughter interactions. Finally, we present a methodology to map the polymer model of the chromosome to a Martini coarse-grained representation to prepare molecular dynamics models of entire Syn3A cells, which serves as an ultimate means of validation for cell states predicted by the WCM.

3.
Structure ; 31(4): 492-503.e7, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870335

RESUMO

Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular
4.
Front Chem ; 11: 1106495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742032

RESUMO

The ultimate microscope, directed at a cell, would reveal the dynamics of all the cell's components with atomic resolution. In contrast to their real-world counterparts, computational microscopes are currently on the brink of meeting this challenge. In this perspective, we show how an integrative approach can be employed to model an entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way to interrogate the cell's spatio-temporal evolution with molecular dynamics simulations, an approach that can be extended to other cell types in the near future.

5.
J Phys Chem Lett ; 14(4): 905-911, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36662680

RESUMO

The photosystem II PsbS protein triggers the photoprotective mechanism of plants by sensing the acidification of the thylakoid lumen. Despite the mechanism of action of PsbS would require a pH-dependent monomerization of the dimeric form, a clear connection between the pH-induced structural changes and the dimer stability is missing. Here, by applying constant pH coarse-grained and all-atom molecular dynamics simulations, we investigate the pH-dependent structural response of the PsbS dimer. We find that the pH variation leads to structural changes in the lumen-exposed helices, located at the dimeric interface, providing an effective switch between PsbS inactive and active form. Moreover, the monomerization free energies reveal that in the neutral pH conformation, where the network of H-bond interactions at the dimeric interface is destroyed, the protein-protein interaction is weaker. Our results show how the pH-dependent conformations of PsbS affect their dimerization propensity, which is at the basis of the photoprotective mechanism.


Assuntos
Simulação de Dinâmica Molecular , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Molecular , Dimerização , Concentração de Íons de Hidrogênio
6.
J Chem Theory Comput ; 18(12): 7555-7569, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36342474

RESUMO

The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme which decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals were developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the polyglucoses dextran (water-soluble) and cellulose (water insoluble but soluble in ionic liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids. We show they are able to reproduce membrane properties and induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach.


Assuntos
Celulose , Água , Termodinâmica , Água/química , Configuração de Carboidratos
7.
J Phys Chem C Nanomater Interfaces ; 126(45): 19462-19469, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36425002

RESUMO

High dielectric constant organic semiconductors, often obtained by the use of ethylene glycol (EG) side chains, have gained attention in recent years in the efforts of improving the device performance for various applications. Dielectric constant enhancements due to EGs have been demonstrated extensively, but various effects, such as the choice of the particular molecule and the frequency and temperature regime, that determine the extent of this enhancement require further understanding. In this work, we study these effects by means of polarizable molecular dynamics simulations on a carefully selected set of fullerene derivatives with EG side chains. The selection allows studying the dielectric response in terms of both the number and length of EG chains and also the choice of the group connecting the fullerene to the EG chain. The computed time- and frequency-dependent dielectric responses reveal that the experimentally observed rise of the dielectric constant within the kilo/megahertz regime for some molecules is likely due to the highly stretched dielectric response of the EGs: the initial sharp increase over the first few nanoseconds is followed by a smaller but persistent increase in the range of microseconds. Additionally, our computational protocol allows the separation of different factors that contribute to the overall dielectric constant, providing insights to make several molecular design guides for future organic materials in order to enhance their dielectric constant further.

8.
Nat Commun ; 13(1): 68, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013176

RESUMO

Molecular dynamics simulations play an increasingly important role in the rational design of (nano)-materials and in the study of biomacromolecules. However, generating input files and realistic starting coordinates for these simulations is a major bottleneck, especially for high throughput protocols and for complex multi-component systems. To eliminate this bottleneck, we present the polyply software suite that provides 1) a multi-scale graph matching algorithm designed to generate parameters quickly and for arbitrarily complex polymeric topologies, and 2) a generic multi-scale random walk protocol capable of setting up complex systems efficiently and independent of the target force-field or model resolution. We benchmark quality and performance of the approach by creating realistic coordinates for polymer melt simulations, single-stranded as well as circular single-stranded DNA. We further demonstrate the power of our approach by setting up a microphase-separated block copolymer system, and by generating a liquid-liquid phase separated system inside a lipid vesicle.


Assuntos
Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Algoritmos , Animais , Biologia Computacional , Lipídeos , Conformação de Ácido Nucleico , Software
9.
Adv Mater ; 33(24): e2008635, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33956373

RESUMO

The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.

10.
Nat Methods ; 18(4): 382-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782607

RESUMO

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.


Assuntos
Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Bicamadas Lipídicas , Termodinâmica
11.
Methods Mol Biol ; 2199: 315-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33125658

RESUMO

Enhancement of proteins by PEGylation is an active area of research. However, the interactions between polymer and protein are far from fully understood. To gain a better insight into these interactions or even make predictions, molecular dynamics (MD) simulations can be applied to study specific protein-polymer systems at molecular level detail. Here we present instructions on how to simulate PEGylated proteins using the latest iteration of the Martini coarse-grained (CG) force-field. CG MD simulations offer near atomistic information and at the same time allow to study complex biological systems over longer time and length scales than fully atomistic-level simulations.


Assuntos
Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Proteínas/química
12.
J Chem Phys ; 153(2): 024118, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668918

RESUMO

In this work, we deliver a proof of concept for a fast method that introduces pH effects into classical coarse-grained (CG) molecular dynamics simulations. Our approach is based upon the latest version of the popular Martini CG model to which explicit proton mimicking particles are added. We verify our approach against experimental data involving several different molecules and different environmental conditions. In particular, we compute titration curves, pH dependent free energies of transfer, and lipid bilayer membrane affinities as a function of pH. Using oleic acid as an example compound, we further illustrate that our method can be used to study passive translocation in lipid bilayers via protonation. Finally, our model reproduces qualitatively the expansion of the macromolecule dendrimer poly(propylene imine) as well as the associated pKa shift of its different generations. This example demonstrates that our model is able to pick up collective interactions between titratable sites in large molecules comprising many titratable functional groups.

13.
J Phys Chem B ; 122(29): 7436-7449, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29966087

RESUMO

Motivated by the deficiencies of the previous MARTINI models of poly(ethylene oxide) (PEO), we present a new model featuring a high degree of transferability. The model is parametrized on (a) a set of 8 free energies of transfer of dimethoxyethane (PEO dimer) from water to solvents of varying polarity; (b) the radius of gyration in water at high dilution; and (c) matching angle and dihedral distributions from atomistic simulations. We demonstrate that our model behaves well in five different areas of application: (1) it produces accurate densities and phase behavior or small PEO oligomers and water mixtures; (2) it yields chain dimensions in good agreement with the experiment in three different solvents (water, diglyme, and benzene) over a broad range of molecular weights (∼1.2 kg/mol to 21 kg/mol); (3) it reproduces qualitatively the structural features of lipid bilayers containing PEGylated lipids in the brush and mushroom regime; (4) it is able to reproduce the phase behavior of several PEO-based nonionic surfactants in water; and (5) it can be combined with the existing MARTINI PS to model PS-PEO block copolymers. Overall, the new PEO model outperforms previous models and features a high degree of transferability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA