Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biol Direct ; 19(1): 38, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741178

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS: RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS: An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS: Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Vesículas Extracelulares , Neoplasias Renais , RNA Nucleolar Pequeno , Humanos , Carcinoma de Células Renais/urina , Carcinoma de Células Renais/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/urina , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Neoplasias Renais/urina , Neoplasias Renais/genética , Idoso , RNA Nucleolar Pequeno/genética , Estudos de Coortes , Adulto
2.
Plant Physiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743690

RESUMO

Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety 'Calardis Musqué' and the late-ripening variety 'Villard Blanc'. Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 years. Through locus-specific-marker-enrichment and recombinant screening of ∼1000 additional genotypes, we refined the originally postulated 5 Mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor (ERF) VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal 'Pinot' variant first mentioned in the 17th century. 'Pinot Precoce Noir' passed this allele over 'Madeleine Royale' to the maternal grandparent 'Bacchus Weiss' and, ultimately, to the maternal parent 'Calardis Musqué'. Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology.

3.
Acta Neuropathol Commun ; 12(1): 67, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38671536

RESUMO

Melanoma is the most serious type of skin cancer that frequently spreads to other organs of the human body. Especially melanoma metastases to the brain (intracranial metastases) are hard to treat and a major cause of death of melanoma patients. Little is known about molecular alterations and altered mechanisms that distinguish intra- from extracranial melanoma metastases. So far, almost all existing studies compared intracranial metastases from one set of patients to extracranial metastases of an another set of melanoma patients. This neglects the important facts that each melanoma is highly individual and that intra- and extracranial melanoma metastases from the same patient are more similar to each other than to melanoma metastases from other patients in the same organ. To overcome this, we compared the gene expression profiles of 16 intracranial metastases to their corresponding 21 patient-matched extracranial metastases in a personalized way using a three-state Hidden Markov Model (HMM) to identify altered genes for each individual metastasis pair. This enabled three major findings by considering the predicted gene expression alterations across all patients: (i) most frequently altered pathways include cytokine-receptor interaction, calcium signaling, ECM-receptor interaction, cAMP signaling, Jak-STAT and PI3K/Akt signaling, (ii) immune-relevant signaling pathway genes were downregulated in intracranial metastases, and (iii) intracranial metastases were associated with a brain-like phenotype gene expression program. Further, the integration of all differentially expressed genes across the patient-matched melanoma metastasis pairs led to a set of 103 genes that were consistently down- or up-regulated in at least 11 of the 16 of the patients. This set of genes contained many genes involved in the regulation of immune responses, cell growth, cellular signaling and transport processes. An analysis of these genes in the TCGA melanoma cohort showed that the expression behavior of 11 genes was significantly associated with survival. Moreover, a comparison of the 103 genes to three closely related melanoma metastasis studies revealed a core set of eight genes that were consistently down- or upregulated in intra- compared to extracranial metastases in at least two of the three related studies (down: CILP, DPT, FGF7, LAMP3, MEOX2, TMEM119; up: GLDN, PMP2) including FGF7 that was also significantly associated with survival. Our findings contribute to a better characterization of genes and pathways that distinguish intra- from extracranial melanoma metastasis and provide important hints for future experimental studies to identify potential targets for new therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/secundário , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Adulto , Perfilação da Expressão Gênica , Metástase Neoplásica/genética
5.
Comput Struct Biotechnol J ; 23: 1036-1050, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38464935

RESUMO

Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient-matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, computational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory differences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream target genes.

6.
J Exp Clin Cancer Res ; 43(1): 25, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246990

RESUMO

BACKGROUND: Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS: GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS: Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS: DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.


Assuntos
Antagonistas de Dopamina , Glioblastoma , Glioma , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Encéfalo , Proteínas Estimuladoras de Ligação a CCAAT/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dopamina , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos Nus , Família Multigênica , Receptores de Dopamina D1/antagonistas & inibidores , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Proteínas Proto-Oncogênicas c-myc/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo
7.
Nat Commun ; 14(1): 4632, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532709

RESUMO

Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. To create a pipeline for the identification of neoantigens in our cohort, we combine DNA and RNA sequencing with MS-based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity and an in-depth validation process. We detect a broad variety of non-canonical HLA-binding peptides in the majority of patients demonstrating partially immunogenicity. Our validation process allows for the selection of 32 potential neoantigen candidates. The majority of neoantigen candidates originates from variants identified in the RNA data set, illustrating the relevance of RNA as a still understudied source of cancer antigens. This study underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Antígenos de Neoplasias/genética , Peptídeos
8.
J Hematol Oncol ; 16(1): 7, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737824

RESUMO

BACKGROUND: The prognosis of pancreatic ductal adenocarcinoma (PDAC) is one of the most dismal of all cancers and the median survival of PDAC patients is only 6-8 months after diagnosis. While decades of research effort have been focused on early diagnosis and understanding of molecular mechanisms, few clinically useful markers have been universally applied. To improve the treatment and management of PDAC, it is equally relevant to identify prognostic factors for optimal therapeutic decision-making and patient survival. Compelling evidence have suggested the potential use of extracellular vesicles (EVs) as non-invasive biomarkers for PDAC. The aim of this study was thus to identify non-invasive plasma-based EV biomarkers for the prediction of PDAC patient survival after surgery. METHODS: Plasma EVs were isolated from a total of 258 PDAC patients divided into three independent cohorts (discovery, training and validation). RNA sequencing was first employed to identify differentially-expressed EV mRNA candidates from the discovery cohort (n = 65) by DESeq2 tool. The candidates were tested in a training cohort (n = 91) by digital droplet polymerase chain reaction (ddPCR). Cox regression models and Kaplan-Meier analyses were used to build an EV signature which was subsequently validated on a multicenter cohort (n = 83) by ddPCR. RESULTS: Transcriptomic profiling of plasma EVs revealed differentially-expressed mRNAs between long-term and short-term PDAC survivors, which led to 10 of the top-ranked candidate EV mRNAs being tested on an independent training cohort with ddPCR. The results of ddPCR enabled an establishment of a novel prognostic EV mRNA signature consisting of PPP1R12A, SCN7A and SGCD for risk stratification of PDAC patients. Based on the EV mRNA signature, PDAC patients with high risk displayed reduced overall survival (OS) rates compared to those with low risk in the training cohort (p = 0.014), which was successfully validated on another independent cohort (p = 0.024). Interestingly, the combination of our signature and tumour stage yielded a superior prognostic performance (p = 0.008) over the signature (p = 0.022) or tumour stage (p = 0.016) alone. It is noteworthy that the EV mRNA signature was demonstrated to be an independent unfavourable predictor for PDAC prognosis. CONCLUSION: This study provides a novel and non-invasive prognostic EV mRNA signature for risk stratification and survival prediction of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Prognóstico , RNA Mensageiro/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Vesículas Extracelulares/patologia , Biomarcadores Tumorais/genética , Medição de Risco , Neoplasias Pancreáticas
9.
Sci Rep ; 13(1): 444, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624125

RESUMO

Melanomas frequently metastasize to distant organs and especially intracranial metastases still represent a major clinical challenge. Epigenetic reprogramming of intracranial metastases is thought to be involved in therapy failure, but so far only little is known about patient-specific DNA-methylation differences between intra- and extracranial melanoma metastases. Hierarchical clustering of the methylomes of 24 patient-matched intra- and extracranial melanoma metastases pairs revealed that intra- and extracranial metastases of individual patients were more similar to each other than to metastases in the same tissue from other patients. Therefore, a personalized analysis of each metastases pair was done by a Hidden Markov Model to classify methylation levels of individual CpGs as decreased, unchanged or increased in the intra- compared to the extracranial metastasis. The predicted DNA-methylation alterations were highly patient-specific differing in the number and methylation states of altered CpGs. Nevertheless, four important general observations were made: (i) intracranial metastases of most patients mainly showed a reduction of DNA-methylation, (ii) cytokine signaling was most frequently affected by differential methylation in individual metastases pairs, but also MAPK, PI3K/Akt and ECM signaling were often altered, (iii) frequently affected genes were mainly involved in signaling, growth, adhesion or apoptosis, and (iv) an enrichment of functional terms related to channel and transporter activities supports previous findings for a brain-like phenotype. In addition, the derived set of 17 signaling pathway genes that distinguished intra- from extracranial metastases in more than 50% of patients included well-known oncogenes (e.g. PRKCA, DUSP6, BMP4) and several other genes known from neuronal disorders (e.g. EIF4B, SGK1, CACNG8). Moreover, associations of gene body methylation alterations with corresponding gene expression changes revealed that especially the three signaling pathway genes JAK3, MECOM, and TNXB differ strongly in their expression between patient-matched intra- and extracranial metastases. Our analysis contributes to an in-depth characterization of DNA-methylation differences between patient-matched intra- and extracranial melanoma metastases and may provide a basis for future experimental studies to identify targets for new therapeutic approaches.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Fosfatidilinositol 3-Quinases/genética , Neoplasias Encefálicas/tratamento farmacológico , Melanoma/patologia , Metilação de DNA , DNA/uso terapêutico , Canais de Cálcio/genética
10.
J Invest Dermatol ; 143(7): 1233-1245.e17, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716920

RESUMO

Despite remarkable advances in treating patients with metastatic melanoma, the management of melanoma brain metastases remains challenging. Recent evidence suggests that epigenetic reprogramming is an important mechanism for the adaptation of melanoma cells to the brain environment. In this study, the methylomes and transcriptomes of a cohort of matched melanoma metastases were evaluated by integrated omics data analysis. The identified 38 candidate genes displayed distinct promoter methylation and corresponding gene expression changes in intracranial compared with extracranial metastases. The 11 most promising genes were validated on protein level in both tumor and surrounding normal tissue using immunohistochemistry. In accordance with the underlying promoter methylation and gene expression changes, a significantly different protein expression was confirmed for STK10, PDXK, WDR24, CSSP1, NMB, RASL11B, phosphorylated PRKCZ, PRKCZ, and phosphorylated GRB10 in the intracranial metastases. The observed changes imply a distinct intracranial phenotype with increased protein kinase B phosphorylation and a higher frequency of proliferating cells. Knockdown of PRKCZ or GRB10 altered the expression of phosphorylated protein kinase B and decreased the viability of a brain-specific melanoma cell line. In summary, epigenetically regulated cancer-relevant alterations were identified that provide insights into the molecular mechanisms that discriminate brain metastases from other organ metastases, which could be exploited by targeting the affected signaling pathways.


Assuntos
Neoplasias Encefálicas , Melanoma , Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
11.
EMBO Mol Med ; 14(12): e15343, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36278433

RESUMO

Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Lactato Desidrogenases , Animais , Camundongos , Ácido Láctico , Metabolômica , Glioblastoma/enzimologia , Glioblastoma/patologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia
12.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628596

RESUMO

The IDH1R132H mutation in glioma results in the neoenzymatic function of IDH1, leading to the production of the oncometabolite 2-hydroxyglutarate (2-HG), alterations in energy metabolism and changes in the cellular redox household. Although shifts in the redox ratio NADPH/NADP+ were described, the consequences for the NAD+ synthesis pathways and potential therapeutic interventions were largely unexplored. Here, we describe the effects of heterozygous IDH1R132H on the redox system in a CRISPR/Cas edited glioblastoma model and compare them with IDH1 wild-type (IDH1wt) cells. Besides an increase in 2-HG and decrease in NADPH, we observed an increase in NAD+ in IDH1R132H glioblastoma cells. RT-qPCR analysis revealed the upregulation of the expression of the NAD+ synthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Knockdown of NAMPT resulted in significantly reduced viability in IDH1R132H glioblastoma cells. Given this dependence of IDH1R132H cells on NAMPT expression, we explored the effects of the NAMPT inhibitors FK866, GMX1778 and GNE-617. Surprisingly, these agents were equally cytotoxic to IDH1R132H and IDH1wt cells. Altogether, our results indicate that targeting the NAD+ synthesis pathway is a promising therapeutic strategy in IDH mutant gliomas; however, the agent should be carefully considered since three small-molecule inhibitors of NAMPT tested in this study were not suitable for this purpose.


Assuntos
Neoplasias Encefálicas , Citocinas , Glioblastoma , Glioma , Isocitrato Desidrogenase , Nicotinamida Fosforribosiltransferase , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação para Baixo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , NAD/metabolismo , NADP/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Interferência de RNA
13.
Circ Res ; 129(8): 804-820, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433292
14.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445380

RESUMO

Cholangiocarcinoma (CC) is an aggressive malignancy with an inferior prognosis due to limited systemic treatment options. As preclinical models such as CC cell lines are extremely rare, this manuscript reports a protocol of cholangiocarcinoma patient-derived organoid culture as well as a protocol for the transition of 3D organoid lines to 2D cell lines. Tissue samples of non-cancer bile duct and cholangiocarcinoma were obtained during surgical resection. Organoid lines were generated following a standardized protocol. 2D cell lines were generated from established organoid lines following a novel protocol. Subcutaneous and orthotopic patient-derived xenografts were generated from CC organoid lines, histologically examined, and treated using standard CC protocols. Therapeutic responses of organoids and 2D cell lines were examined using standard CC agents. Next-generation exome and RNA sequencing was performed on primary tumors and CC organoid lines. Patient-derived organoids closely recapitulated the original features of the primary tumors on multiple levels. Treatment experiments demonstrated that patient-derived organoids of cholangiocarcinoma and organoid-derived xenografts can be used for the evaluation of novel treatments and may therefore be used in personalized oncology approaches. In summary, this study establishes cholangiocarcinoma organoids and organoid-derived cell lines, thus expanding translational research resources of cholangiocarcinoma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Organoides/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/transplante , Medicina de Precisão , Análise de Sequência de RNA , Células Tumorais Cultivadas , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Gynecol Oncol ; 159(3): 850-859, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980128

RESUMO

OBJECTIVES: Extending the therapeutic spectrum of PARP-inhibitors (PARPi) beyond BRCA1-deficiency and/or overcoming PARPi-resistance is of high clinical interest. This is particularly true for the identification of innovative therapeutic strategies for ovarian cancer, given the recent advances in the use of PARPi in clinical practice. In this regard, the combination of PARPi with chemotherapy is a possible strategy for defining new therapeutic standards. In this study, we analyzed the therapeutic effect of novel triazene derivatives, including the drug CT913 and its metabolite CT913-M1 on ovarian cancer cells and describe their interaction with the PARPi olaparib. METHODS: In vitro assays for drug characterization including RNA-Seq were applied in a selected panel of ovarian cancer cell lines. RESULTS: CT913 treatment conferred a dose-dependent reduction of cell viability in a set of platinum-sensitive and platinum-resistant ovarian cancer cell lines with an IC50 in the higher micromolar range (553-1083 µM), whereas its metabolite CT913-M1 was up to 69-fold more potent, especially among long-term treatment (IC50 range: 8-138 µM). Neither of the drugs sensitized for cisplatin. CT913 conferred synthetic lethality in BRCA1-deficient ovarian cancer cells, indicating that its effect is augmented by a deficiency in homologous recombination repair (HR). Furthermore, CT913 showed a synergistic interaction with olaparib, independently of BRCA1 mutational status. CT913 strongly induced CDKN1A transcription, suggesting cell cycle arrest as an early response to this drug. It moreover downregulated a variety of transcripts involved in DNA-repair pathways. CONCLUSIONS: This is the first study, suggesting the novel triazene drug CT913 as enhancer drug for extending the therapeutic spectrum of PARPi.


Assuntos
Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Triazenos/farmacologia , Proteína BRCA1/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , RNA-Seq , Reparo de DNA por Recombinação/efeitos dos fármacos , Mutações Sintéticas Letais/efeitos dos fármacos , Triazenos/uso terapêutico
16.
BMC Cancer ; 19(1): 396, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029168

RESUMO

BACKGROUND: With the introduction of Olaparib treatment for BRCA-deficient recurrent ovarian cancer, testing for somatic and/or germline mutations in BRCA1/2 genes in tumor tissues became essential for treatment decisions. In most cases only formalin-fixed paraffin-embedded (FFPE) samples, containing fragmented and chemically modified DNA of minor quality, are available. Thus, multiplex PCR-based sequencing is most commonly applied in routine molecular testing, which is predominantly focused on the identification of known hot spot mutations in oncogenes. METHODS: We compared the overall performance of an adjusted targeted capture-based enrichment protocol and a multiplex PCR-based approach for calling of pathogenic SNVs and InDels using DNA extracted from 13 FFPE tissue samples. We further applied both strategies to seven blood samples and five matched FFPE tumor tissues of patients with known germline exon-spanning deletions and gene-wide duplications in BRCA1/2 to evaluate CNV detection based solely on panel NGS data. Finally, we analyzed DNA from FFPE tissues of 11 index patients from families suspected of having hereditary breast and ovarian cancer, of whom no blood samples were available for testing, in order to identify underlying pathogenic germline BRCA1/2 mutations. RESULTS: The multiplex PCR-based protocol produced inhomogeneous coverage among targets of each sample and between samples as well as sporadic amplicon drop out, leading to insufficiently or non-covered nucleotides, which subsequently hindered variant detection. This protocol further led to detection of PCR-artifacts that could easily have been misinterpreted as pathogenic mutations. No such limitations were observed by application of an adjusted targeted capture-based protocol, which allowed for CNV calling with 86% sensitivity and 100% specificity. All pathogenic CNVs were confirmed in the five matched FFPE tumor samples from patients carrying known pathogenic germline mutations and we additionally identified somatic loss of the second allele in BRCA1/2. Furthermore we detected pathogenic BRCA1/2 variants in four the eleven FFPE samples from patients of whom no blood was available for analysis. CONCLUSIONS: We demonstrate that an adjusted targeted capture-based enrichment protocol is superior to commonly applied multiplex PCR-based protocols for reliable BRCA1/2 variant detection, including CNV-detection, using FFPE tumor samples.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Ovarianas/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Variações do Número de Cópias de DNA/genética , Feminino , Formaldeído/química , Humanos , Mutação INDEL , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Inclusão em Parafina , Linhagem , Reprodutibilidade dos Testes , Fixação de Tecidos
17.
Gut ; 68(2): 207-217, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29703791

RESUMO

OBJECTIVE: Gastric cancer is the second leading cause of cancer-related deaths and the fifth most common malignancy worldwide. In this study, human and mouse gastric cancer organoids were generated to model the disease and perform drug testing to delineate treatment strategies. DESIGN: Human gastric cancer organoid cultures were established, samples classified according to their molecular profile and their response to conventional chemotherapeutics tested. Targeted treatment was performed according to specific druggable mutations. Mouse gastric cancer organoid cultures were generated carrying molecular subtype-specific alterations. RESULTS: Twenty human gastric cancer organoid cultures were established and four selected for a comprehensive in-depth analysis. Organoids demonstrated divergent growth characteristics and morphologies. Immunohistochemistry showed similar characteristics to the corresponding primary tissue. A divergent response to 5-fluoruracil, oxaliplatin, irinotecan, epirubicin and docetaxel treatment was observed. Whole genome sequencing revealed a mutational spectrum that corresponded to the previously identified microsatellite instable, genomic stable and chromosomal instable subtypes of gastric cancer. The mutational landscape allowed targeted therapy with trastuzumab for ERBB2 alterations and palbociclib for CDKN2A loss. Mouse cancer organoids carrying Kras and Tp53 or Apc and Cdh1 mutations were characterised and serve as model system to study the signalling of induced pathways. CONCLUSION: We generated human and mouse gastric cancer organoids modelling typical characteristics and altered pathways of human gastric cancer. Successful interference with activated pathways demonstrates their potential usefulness as living biomarkers for therapy response testing.


Assuntos
Modelos Animais de Doenças , Organoides/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Proteínas Cdh1/genética , Genes APC , Humanos , Imuno-Histoquímica , Camundongos , Mutação , Técnicas de Cultura de Órgãos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab/farmacologia , Proteína Supressora de Tumor p53/genética
19.
Nat Commun ; 9(1): 4250, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315159

RESUMO

Germline mutations in the ubiquitously expressed ACTB, which encodes ß-cytoplasmic actin (CYA), are almost exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF). Here, we report six patients with previously undescribed heterozygous variants clustered in the 3'-coding region of ACTB. Patients present with clinical features distinct from BWCFF, including mild developmental disability, microcephaly, and thrombocytopenia with platelet anisotropy. Using patient-derived fibroblasts, we demonstrate cohort specific changes to ß-CYA filament populations, which include the enhanced recruitment of thrombocytopenia-associated actin binding proteins (ABPs). These perturbed interactions are supported by in silico modeling and are validated in disease-relevant thrombocytes. Co-examination of actin and microtubule cytoskeleton constituents in patient-derived megakaryocytes and thrombocytes indicates that these ß-CYA mutations inhibit the final stages of platelet maturation by compromising microtubule organization. Our results define an ACTB-associated clinical syndrome with a distinct genotype-phenotype correlation and delineate molecular mechanisms underlying thrombocytopenia in this patient cohort.


Assuntos
Actinas/genética , Éxons/genética , Trombocitopenia/genética , Actinas/metabolismo , Plaquetas/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Feminino , Genótipo , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Megacariócitos/metabolismo , Mutação/genética , Fenótipo , Trombocitopenia/metabolismo
20.
Clin Epigenetics ; 10: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721103

RESUMO

Background: Exposure to endocrine-disrupting chemicals can alter normal physiology and increase susceptibility to non-communicable diseases like obesity. Especially the prenatal and early postnatal period is highly vulnerable to adverse effects by environmental exposure, promoting developmental reprogramming by epigenetic alterations. To obtain a deeper insight into the role of prenatal bisphenol A (BPA) exposure in children's overweight development, we combine epidemiological data with experimental models and BPA-dependent DNA methylation changes. Methods: BPA concentrations were measured in maternal urine samples of the LINA mother-child-study obtained during pregnancy (n = 552), and BPA-associated changes in cord blood DNA methylation were analyzed by Illumina Infinium HumanMethylation450 BeadChip arrays (n = 472). Methylation changes were verified by targeted MassARRAY analyses, assessed for their functional translation by qPCR and correlated with children's body mass index (BMI) z scores at the age of 1 and 6 years. Further, female BALB/c mice were exposed to BPA from 1 week before mating until delivery, and weight development of their pups was monitored (n ≥ 8/group). Additionally, human adipose-derived mesenchymal stem cells were treated with BPA during the adipocyte differentiation period and assessed for exposure-related epigenetic, transcriptional and morphological changes (n = 4). Results: In prenatally BPA-exposed children two CpG sites with deviating cord blood DNA-methylation profiles were identified, among them a hypo-methylated CpG in the promoter of the obesity-associated mesoderm-specific transcript (MEST). A mediator analysis suggested that prenatal BPA exposure was connected to cord blood MEST promoter methylation and MEST expression as well as BMI z scores in early infancy. This effect could be confirmed in mice in which prenatal BPA exposure altered Mest promoter methylation and transcription with a concomitant increase in the body weight of the juvenile offspring. An experimental model of in vitro differentiated human mesenchymal stem cells also revealed an epigenetically induced MEST expression and enhanced adipogenesis following BPA exposure. Conclusions: Our study provides evidence that MEST mediates the impact of prenatal BPA exposure on long-term body weight development in offspring by triggering adipocyte differentiation.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Peso Corporal/efeitos dos fármacos , Metilação de DNA , Desenvolvimento Fetal/efeitos dos fármacos , Fenóis/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Proteínas/genética , Animais , Compostos Benzidrílicos/urina , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Epigênese Genética , Feminino , Sangue Fetal/química , Estudos de Associação Genética , Humanos , Lactente , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fenóis/urina , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA