Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 33(5): 1179-1194, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31809042

RESUMO

Exposure to nanomaterials (NMs) is inevitable, requiring robust toxicological assessment to understand potential environmental and human health effects. NMs are favored in many applications because of their small size; however, this allows them to easily aerosolize and, subsequently, expose humans via inhalation. Toxicological assessment of NMs by conventional methods in submerged cell culture is not a relevant way to assess inhalation toxicity of NMs because of particle interference with bioassays and changes in particokinetics when dispersed in medium. Therefore, an in vitro aerosol exposure chamber (AEC) was custom designed and used for direct deposition of NMs from aerosols in the environment to the air-liquid interface of lung cells. Human epithelial lung cell line, A549, was used to assess the toxicity of copper, nickel, and zinc oxide nanopowders aerosolized by acoustic agitation in laboratory study. Post optimization, the AEC was used in the field to expose the A549 cells to NM aerosols generated from firing a hand gun and rifle. Toxicity was assessed using nondestructive assays for cell viability and inflammatory response, comparing the biologic effect to the delivered mass dose measured by inductively coupled plasma-mass spectrometry. The nanopowder exposure to submerged and ALI cells resulted in dose-dependent toxicity. In the field, weapon exhaust from the M4 reduced cell viability greater than the M9, while the M9 stimulated inflammatory cytokine release of IL-8. This study highlights the use of a portable chamber with the capability to assess toxicity of NM aerosols exposed to air-liquid interface in vitro lung cell culture.


Assuntos
Aerossóis/toxicidade , Poluição Ambiental/efeitos adversos , Nanoestruturas/toxicidade , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Humanos , Interleucina-8/metabolismo , Níquel/toxicidade , Tamanho da Partícula , Testes de Toxicidade , Células Tumorais Cultivadas , Óxido de Zinco/toxicidade
2.
J Occup Environ Hyg ; 14(6): 461-472, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28278066

RESUMO

U.S. Air Force small arms firing ranges began using copper-based, lead-free frangible ammunition in the early 2000s due to environmental and health concerns related to the use of lead-based ammunition. Exposure assessments at these firing ranges have routinely detected chemicals and metals in amounts much lower than their mass-based occupational exposure limits, yet, instructors report work-related health concerns including respiratory distress, nausea, and headache. The objective of this study at one firing range was to characterize the aerosol emissions produced by weapons during firing events and evaluate the ventilation system's effectiveness in controlling instructor exposure to these emissions. The ventilation system was assessed by measuring the range static air pressure differential and the air velocity at the firing line. Air flow patterns were near the firing line. Instructor exposure was sampled using a filter-based air sampling method for metals and a wearable, real-time ultrafine particle counter. Area air sampling was simultaneously performed to characterize the particle size distribution, morphology, and composition. In the instructor's breathing zone, the airborne mass concentration of copper was low (range = <1 µg/m3 to 16 µg/m3), yet the ultrafine (nanoscale) particle number concentration increased substantially during each firing event. Ultrafine particles contained some copper and were complex in morphology and composition. The ventilation assessment found that the average velocity across all shooting lanes was acceptable compared to the recommended guideline (20% of the ideal 0.38 m/s (75 ft/min). However, uniform, downrange airflow pattern requirements were not met. These results suggest that the mass-based occupational exposure limits, as applied to this environment, may not be protective enough to eliminate health complaints reported by instructors whose full-time job involves training personnel on weapons that fire lead-free frangible ammunition. Using an ultrafine particle counter appears to be an alternative method of assessing ventilation effectiveness in removing ultrafine particulate produced during firing events.


Assuntos
Poluentes Ocupacionais do Ar/análise , Armas de Fogo , Exposição Ocupacional/análise , Movimentos do Ar , Cobre/análise , Monitoramento Ambiental/métodos , Humanos , Militares , Nanopartículas/análise , Ohio , Tamanho da Partícula , Ventilação
3.
Toxicol Sci ; 147(1): 5-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26310852

RESUMO

The exponential growth in the employment of nanomaterials (NMs) has given rise to the field of nanotoxicology; which evaluates the safety of engineered NMs. Initial nanotoxicological studies were limited by a lack of both available materials and accurate biodispersion characterization tools. However, the years that followed were marked by the development of enhanced synthesis techniques and characterization technologies; which are now standard practice for nanotoxicological evaluation. Paralleling advances in characterization, significant progress was made in correlating specific physical parameters, such as size, morphology, or coating, to resultant physiological responses. Although great strides have been made to advance the field, nanotoxicology is currently at a crossroads and faces a number of obstacles and technical limitations not associated with traditional toxicology. Some of the most pressing and influential challenges include establishing full characterization requirements, standardization of dosimetry, evaluating kinetic rates of ionic dissolution, improving in vitro to in vivo predictive efficiencies, and establishing safety exposure limits. This Review will discuss both the progress and future directions of nanotoxicology: highlighting key previous research successes and exploring challenges plaguing the field today.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia/tendências , Toxicologia/tendências , Animais , Humanos , Nanoestruturas/química , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle
4.
ACS Appl Mater Interfaces ; 5(17): 8366-73, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23957848

RESUMO

One of the primary challenges associated with nanoparticle-dependent biological applications is that endosomal entrapment in a physiological environment severely limits the desired targeting and functionality of the nanoconstructs. This study sought to overcome that challenge through a systematic approach of gold nanorod (GNR) functionalization: evaluating the influence of both aspect ratio and surface chemistry on targeted cellular internalization rates and preservation of particle integrity. Owing to their unique spectral properties and enhanced surface area, GNRs possess great potential for the advancement of nanobased delivery and imaging applications. However, their ability for efficient intracellular delivery while maintaining their specific physiochemical parameters has yet to be satisfactorily explored. This study identified that longer and positively charged GNRs demonstrated a higher degree of internalization compared to their shorter and negative counterparts. Notably, of the four surface chemistries explored, only tannic acid resulted in retention of GNR integrity following endocytosis into keratinocyte cells, due to the presence of a strong protein corona matrix that served to protect the particles. Taken together, these results identify tannic acid functionalized GNRs as a potential candidate for future development in nanobased biomolecule delivery, bioimaging, and therapeutic applications.


Assuntos
Endossomos/metabolismo , Ouro/química , Nanotubos/química , Taninos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Endossomos/química , Humanos , Microscopia Confocal , Nanotubos/toxicidade
5.
Int J Toxicol ; 26(2): 135-41, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17454253

RESUMO

In the present study, an ultrahigh-resolution system was applied as a simple and convenient technique to characterize the extent of metal nanoparticle agglomeration in solution and to visualize nanoparticle agglomeration, uptake, and surface interaction in three cell phenotypes under normal culture conditions. The experimental results demonstrated that silver (25, 80, 130 nm); aluminum (80 nm); and manganese (40 nm) particles and agglomerates were effectively internalized by rat liver cells (BRL 3A), rat alveolar macrophages (MACs), and rat neuroendocrine cells (PC-12). Individual and agglomerated nanoparticles were observed within the cells and agglomerates were observed on the cell surface membranes. The particles were initially dispersed in aqueous or physiological balanced salt solutions and agglomeration was observed using the Ultra Resolution Imaging (URI) system. Different methods, such as sonication and addition of surfactant (0.1% sodium dodecyl sulfate [SDS]) reduced agglomeration. Due to effects of SDS itself on cell viability, the surfactant could not be directly applied during cell exposure. Therefore, following addition of 0.1% SDS, the particles were washed twice with ultrapure water, which reduced agglomeration even further. Reducing the agglomeration of the nanoparticles is important for studying their uptake and in applications that benefit from individual nanoparticles such as diagnostics. In summary, this study demonstrates a simple technique to characterize the extent of nanoparticle agglomeration in solution and visualize nanoparticle (40 nm and larger) uptake and interaction with cells. Additionally, an example application of nanoparticle labeling onto the surface and neurite extensions of murine neuroblastoma cells (N2A) is presented as a potential imaging tool.


Assuntos
Linhagem Celular/efeitos dos fármacos , Floculação , Metais/toxicidade , Microscopia/métodos , Nanopartículas/toxicidade , Nanotecnologia , Animais , Linhagem Celular/metabolismo , Linhagem Celular/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Metais/química , Metais/metabolismo , Camundongos , Microscopia/instrumentação , Nanopartículas/química , Tamanho da Partícula , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA