Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 98(5): 692, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-30708511

RESUMO

Botrytis cinerea Pers. is the causal agent of gray mold and one of the most economically important plant-pathogenic fungi affecting strawberry (Fragaria × ananassa). Control of gray mold mainly depends on the use of site-specific fungicides, including the phenylpyrrole fludioxonil. This fungicide is currently registered in combination with cyprodinil in form of Switch 62.5WG (Syngenta Crop Protection, Greensboro, NC) for gray mold control of small fruits in the United States. In June 2013, strawberries affected with symptoms resembling gray mold were observed despite the application of Switch in one field located in Federalsburg, MD, and one located near Chesnee, SC. Ten single-spore isolates, each from a different fruit, were obtained from each location and confirmed to be B. cinerea using cultural and molecular tools as described previously (3). In vitro sensitivity to fludioxonil (Scholar SC, 20.4% [v/v] active ingredient, Syngenta Crop Protection, Greensboro, NC) was determined using a conidial germination assay as previously described (4). Eight of the 20 isolates (six from Maryland and two from South Carolina) were moderately resistant to fludioxonil, i.e., they grew on medium amended with 0.1 µg/ml fludixonil and showed residual growth at 10 µg/ml (4). The in vitro assay was repeated obtaining the same results. To assess in vivo sensitivity on fungicide-treated fruit, commercially grown strawberries were rinsed with water, dried, and sprayed 4 h prior to inoculation with either water or 2.5 ml/liter of Scholar SC to runoff using a hand mister. Fruit was stab-wounded with a sterile syringe and inoculated with a 30-µl droplet of conidia suspension (106 spores/ml) of either two sensitive or four resistant isolates (two isolates from Maryland and two isolates from South Carolina). Each isolate/treatment combination consisted of 24 mature but still firm strawberry fruit with three 8-fruit replicates. The fruit were kept at 22°C and lesion diameters were measured after 4 days of inoculation. The sensitive isolates developed gray mold symptoms on nontreated (2.5 cm lesion diameter) but not on Scholar SC-treated fruit. The resistant isolates developed gray mold on both, the water-treated control (2.3 cm lesion diameter), and the fungicide-treated fruit (1.8 cm lesion diameter). The experiment was performed twice. To our knowledge this is the first report of fludioxonil resistance in B. cinerea from strawberry fields in Maryland and South Carolina. Resistance to fludioxonil is still rare in the United States and has only been reported in B. cinerea isolates from a Virginia strawberry field (1). The increase in occurrence of resistance to fludioxonil may be a result of increased use of Switch following reports of resistance to other chemical classes in this pathogen in southern strawberry fields (2). References: (1) D. Fernández-Ortuño et al. Plant Dis. 97:848, 2013. (2) D. Fernández-Ortuño et al. Plant Dis. 96:1198, 2012. (3) D. Fernández-Ortuño et al. Plant Dis. 95:1482, 2011. (4) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.

2.
Plant Dis ; 98(6): 848, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30708673

RESUMO

Botrytis cinerea Pers. is an important plant-pathogenic fungi responsible for gray mold on more than 230 plant species worldwide, including blackberry (Rubus). One of the main strategies to control the disease involves the application of different classes of fungicides. The phenylpyrrole fludioxonil is currently marketed in combination with the anilinopyrimidine cyprodinil as Switch 62.5WG (Syngenta Crop Protection Inc., Greensboro, NC) for gray mold control. In August 2013, blackberries affected with symptoms resembling gray mold were collected from a field located in Berrien County (Georgia), where Switch 62.5WG had been used extensively over the last 5 years. Three single-spore isolates, each from a different fruit, were obtained and identified as B. cinerea on the basis of morphology and confirmed by a 238-bp PCR amplification product obtained with primer set G3PDH-F1 (5'-GGACCCGAGCTAATTTATGTCACGT-3'), G3PDH-F2 (5'-GGGTGTCAACAACGAGACCTACACT-3'), and G3PDH-R (5'-ACCGGTGCTCGATGGGATGAT-3'). In vitro sensitivity to fludioxonil (Scholar SC, Syngenta) was determined on 1% malt extract agar (MEA) using a conidial germination assay as previously described (4). One isolate was moderately resistant due to growth on medium amended with the discriminatory dose of 0.1 µg/ml fludioxonil and residual growth at 10 µg/ml (4). To assess performance of fludioxonil in detached fruit assays, commercially grown strawberries (24 in total for each isolate and treatment) were rinsed with water, dried, and sprayed 4 h prior to inoculation with either water (control fruit) or 2.5 ml/liter of Scholar SC to runoff using a hand mister. Scholar SC was used because fludioxonil was the sole active ingredient in this product and strawberries were used because latent infections in fresh blackberry fruit interfered with inoculation experiments. This dose reflects the rate recommended for postharvest gray mold control according to the Scholar label. Fruit was stab-wounded with a sterile syringe and inoculated with a 30-µl droplet of conidia suspension (106 spores/ml) of the two sensitive or the resistant isolate. After inoculation, the fruit were kept at 22°C for 4 days. The sensitive isolates developed gray mold on non-treated (2.7 cm lesion diameter) but not on Scholar SC-treated fruit (0.0 cm lesion diameter). The resistant isolate developed gray mold disease on the water-treated control fruit (2.5 cm lesion diameter) and the fungicide-treated fruit (1.8 cm lesion diameter). EC50 values were determined in microtiter assays as described previously (3) using the concentrations of 0.01, 0.04, 0.12, 0.37, 1.1, 3.3, and 10 µg/ml fludioxonil. Values were 0.02 and 0.05 µg/ml for the two sensitive isolates and 3.15 µg/ml for the resistant isolate. All experiments were performed twice. This is the first report of fludioxonil resistance in B. cinerea from blackberry in Georgia. Prior to this study, resistance to fludioxonil in B. cinerea was reported in France, Germany, and only a few states in the United States including Maryland, South Carolina, Virginia, and Washington (1,2). The emergence of resistance to fludioxonil emphasizes the importance of resistance management strategies. References: (1) D. Fernández-Ortuño et al. Plant Dis. 97:848, 2013. (2) D. Fernández-Ortuño et al. Plant Dis. 98:692, 2013. (3) M. Kretschmer et al. PLOS Pathog. 5:e1000696, 2009. (4) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.

3.
Plant Dis ; 98(8): 1154, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30708803

RESUMO

In July 2013, two diseased peach fruit (Prunus persica (L.) Stokes) of the cv. Sweet Dream were collected from a commercial orchard in Ridge Springs, South Carolina. Affected peaches were at or near maturity and symptoms resembled anthracnose disease caused by Colletotrichum spp. with circular sunken tan to brown lesions that were firm in touch, and had wrinkled concentric rings. The center of the lesion was covered with black acervuli containing setae. To isolate the causal agent, the two symptomatic fruit were surface-sterilized in 10% bleach for 2 min and rinsed with sterile distilled water. Lesions were cut in half, and necrotic tissue from the inside of the fruit was placed on acidified potato dextrose agar (APDA). Flat colonies covered with olive-gray to iron-gray acervuli developed on APDA incubated at 22°C with a 12-h cycle of fluorescent light and darkness. Morphology of acervuli, setae (avg. 90 to 160 µm), conidiophores (up to 90 um long), and conidia (avg. 22 × 3.8 µm) of single spore isolates were consistent with descriptions of Colletotrichum truncatum (Schwein.) Andrus & W.D. Moore (3), a causal agent of anthracnose disease. Genomic DNA was extracted from isolate Ct_RR13_1 using the MasterPure Yeast DNA Purification Kit (Epicentre, Madison, WI). The ribosomal ITS1-5.8S-ITS2 region and a partial sequence of the actin gene were amplified with primer pair ITS1 and ITS4 (4), and primer pair ACT-512F and ACT-783A (2), respectively. A multilocus sequence identification in Q-bank Fungi revealed a 100% similarity with C. truncatum (1). The C. truncatum sequences from the peach isolate were submitted to GenBank (accessions KF906258 and KF906259). Pathogenicity of isolate Ct_RR13_1 was confirmed by inoculating five mature but still firm peach fruits with a conidial suspension of C. truncatum. Peaches were washed with soap and water, surface-disinfected for 2 min with 10% bleach, rinsed with sterile distilled water, and air dried. Dried fruit were stabbed at three equidistant points, each about 2 cm apart, to a depth of 9.5 mm using a sterile 26G3/8 beveled needle (Becton Dickinson & Co., Rutherford, NJ). For inoculation, a 30-µl droplet of conidia suspension prepared in distilled, sterile water (1 to 2 × 104 spores/ml) was placed on each wound; control fruit received sterile water without conidia. Fruit were incubated at 22°C for 2 days at 100% humidity and another 12 days at 70% humidity. Inoculated fruit developed anthracnose symptoms with sporulating areas as described above and the fungus was re-isolated. All control fruit remained healthy. C. truncatum has a wide host range, including legumes and solanaceous plants of the tropics, and is especially common in the Fabaceae family. Its occurrence in a commercial peach orchard is worrisome because control measures may need to be developed that are different from those developed for endemic species, i.e. C. acutatum and C. gloeoporioides, due to differences in disease cycle or fungicide sensitivity. To our knowledge, this is the first report of C. truncatum causing anthracnose on a member of the genus Prunus. References: (1) P. Bonants et al. EPPO Bull. 43:211, 2013. (2) I. Carbone et al. Mycologia 91:553, 1999. (3) U. Damm et al. Fungal Divers. 39:45, 2009. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: A Guide to Methods and Application. Academic Press, NY, 1993.

4.
Plant Dis ; 97(6): 848, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30722628

RESUMO

Gray mold caused by Botrytis cinerea Pers.:Fr. is one of the most economically important diseases of cultivated strawberry (Fragaria × ananassa) worldwide. Control of gray mold mainly depends on fungicides, including the phenylpyrrole fludioxonil, which is currently marketed in combination with cyprodinil as Switch 62.5WG (Syngenta Crop Protection, Research Triangle Park, Raleigh, NC). In 2012, 790 strains of B. cinerea were collected from 76 strawberry fields in eight states, including Arkansas, Florida, Georgia, Kansas, Maryland, North Carolina, South Carolina, and Virginia. Strains were collected from sporulating flowers and fruit and sensitivity to fludioxonil was determined using a conidial germination assay as previously described (2). Only one isolate from a farm located in Westmoreland County, Virginia, grew on medium amended with the discriminatory dose of 0.1 µg/ml fludioxonil and was therefore considered low resistant. The isolate did not grow on 10 µg/ml. All other 789 isolates did not grow at either of the two doses. This assay was repeated twice with a single-spore culture of the same strain. In both cases, residual growth was observed on the fludioxonil-amended medium of 0.1 µg/ml. The single spore isolate was confirmed to be B. cinerea Pers. using cultural and molecular tools as described previously (1). To assess resistance in vivo, commercially grown ripe strawberry fruit were rinsed with sterile water, dried, placed into plastic boxes (eight strawberries per box for each of the three replicates per treatment), and sprayed 4 h prior to inoculation with either water or 2.5 ml/liter of fludioxonil (Scholar SC, Syngenta) to runoff using a hand mister. This dose reflects the rate recommended for gray mold control according to the Scholar label. Each fruit was stabbed at three equidistant points, each about 1 cm apart and 1 cm deep using a syringe tip. Wounds were injected with a 30-µl droplet of conidia suspension (106 spores/ml) of either 5 sensitive or the resistant isolate. Control fruit were inoculated with water. After inoculation, the fruit were kept at 22°C for 4 days. In two independent experiments, sensitive and low resistant isolates were indistinguishable in pathogenicity on detached, unsprayed fruit. The low resistant isolate developed gray mold disease on all treated and untreated fruit (100% disease incidence) as determined by the absence or presence of gray mold symptoms. The sensitive isolates only developed disease on untreated fruit. The EC50 values, determined in microtiter assays with concentrations of 0.01, 0.03, 0.1, 0.3, 1, 3, and 10 µg/ml fludioxonil, were 0.01 µg/ml for the sensitive isolates and 0.26 µg/ml for the resistant isolate. To our knowledge, this is the first report of fludioxonil resistance in B. cinerea from strawberry in North America. Our monitoring results indicate that resistance is emerging 10 years after the introduction of fludioxonil and stress the importance of chemical rotation for gray mold control. References: (1) X. P. Li et al. Plant Dis. 96:1634, 2012. (2) R. W. S. Weber and M. Hahn. J. Plant Dis. Prot. 118:17, 2011.

5.
Plant Dis ; 95(6): 772, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30731935

RESUMO

Monilinia fructicola (G. Wint.) Honey is a causal agent of brown rot of stone fruits but may also affect pome fruits. M. fructicola is common in North America, Oceania, and South America as well as in Asia, but it is listed as a quarantine pathogen in Europe (3). Since its first discovery in Europe in 2001 (France), it has been reported in Spain, Slovenia, Italy, and Switzerland. Recently, the fungus was also detected in orchards of blackberries and plums in the State of Baden-Württemberg, Germany (4). In July 2010, apples (Malus domestica Borkh.) of the cultivar Jonagold were found in a residential backyard in Fronhausen an der Lahn located in the State of Hessen, Germany with symptoms resembling brown rot caused by Monilinia species. Affected apples were at or near maturity with brown decay that had spread throughout the fruits. On the surface of the decaying apples was tan to white zones of sporulation. Upon isolation, the mycelium grew at a linear rate of 9.2 mm per day at 22°C on potato dextrose agar forming branched, monilioid chains of grayish colonies with concentric rings and little sporulation. The lemon-shaped spores had an average size of 14 × 9 µm, a shape and size consistent with M. fructicola. The ribosomal ITS1-5.8S-ITS2 region was PCR-amplified from genomic DNA obtained from mycelium using primers ITS1 and ITS4. A BLAST search in GenBank revealed highest similarity (99%) to M. fructicola sequences from isolates collected in China, Italy, and Slovenia (GenBank Accession Nos. FJ515894.1, FJ411109.1, GU967379.1). The M. fructicola sequence from the apple isolate was submitted to GenBank (Accession No. JF325841). The pathogen was also identified to the species level and confirmed to be M. fructicola using two novel PCR techniques based on cytochrome b sequences (1,2). Pathogenicity was confirmed by inoculating three surface-sterilized, mature apples cv. Gala with a conidial suspension (105 spores/ml) of the apple isolate. Fruit were stab inoculated at three equidistant points to a depth of 10 mm using a sterile needle. A 30-µl droplet was placed on each wound; control fruit received sterile water without conidia. After 5 days of incubation at room temperature in air-tight plastic bags, the inoculated fruits developed typical brown rot symptoms with sporulating areas (as described above). The developing spores on inoculated fruit were confirmed to be M. fructicola. All control fruits remained healthy. To our knowledge, this is the first report of M. fructicola on apple in Germany and more indication of further geographical spread of the quarantine disease in Germany. References: (1) J.-M. Hily et al. Pest Manag. Sci. Online publication. doi 10.1002/ps.2074, 2011. (2) S. Miessner and G. Stammler. J. Plant Dis. Prot. 117:162, 2010. (3) OEPP/EPPO. EPPO A2 list of pests recommended for regulation as quarantine pests. Version 2009-09. Retrieved from http://www.eppo.org/QUARANTINE/listA2.htm , September 22, 2010. (4) OEPP/EPPO. Reporting Service. No. 1, January 2010. Retrieved from http://archives.eppo.org/EPPOReporting/2010/Rse-1001.pdf , September 22, 2010.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA