Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(30): 7597-7602, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028941

RESUMO

This study explores the molecular clusters of cyclopentene (CPE) with one to three CO2 molecules (CPE-(CO2)1-3) through their jet-cooled rotational spectra using Fourier transform microwave spectroscopy with supplementary quantum chemical calculations. The assembly of CPE-(CO2)1-3 clusters is predominantly driven by tetrel bonding networks, notably C···π(C═C) and C···O interactions, with additional stabilization from weak C─H(CH2)···C═O hydrogen bonds. Critically, the dispersive forces play a pivotal role in stabilizing CO2 aggregation on CPE, eclipsing the effects of electrostatic and orbital interactions. This highlights the complex balance of forces that govern the formation and stabilization of these molecular clusters. Our findings offer precise insights into noncovalent interactions that could enhance atmospheric chemistry models and sustain climate science through informed environmental chemistry strategies.

2.
Angew Chem Int Ed Engl ; 63(29): e202404447, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38717939

RESUMO

Structural changes induced by water play a pivotal role in chemistry and biology but remain challenging to predict, measure, and control at molecular level. Here we explore size-governed gas-phase water aggregation in the flexible molecule 4-hydroxy-2-butanone, modeling the conformational adaptability of flexible substrates to host water scaffolds and the preference for sequential droplet growth. The experiment was conducted using broadband rotational spectroscopy, rationalized with quantum chemical calculations. Two different isomers were observed experimentally from the di- to the pentahydrates (4-hydroxy-2-butanone-(H2O)n=2-5), including the 18O isotopologues for the di- and trihydrates. Interestingly, to accommodate water molecules effectively, the heavy atom skeleton of 4-hydroxy-2-butanone reshapes in every observed isomer and does not correspond to the stable conformer of the free monomer. All solvates initiate from the alcohol group (proton donor) but retain the carbonyl group as secondary binding point. The water scaffolds closely resemble those found in the pure water clusters, balancing between the capability of 4-hydroxy-2-butanone for steering the orientation and position of the water molecules and the ability of water to modulate the monomer's conformation. The present work thus provides an accurate molecular description on how torsionally flexible molecules dynamically adapt to water along progressing solvation.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124425, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754207

RESUMO

This study explores the effects of the -CF3 group on non-covalent interactions through a comprehensive rotational investigation of the 2-(trifluoromethyl)acrylic acid-water complex. Employing Fourier transform microwave spectroscopy complemented by quantum chemical calculations, two isomers, i.e., s-cis and s-trans structures, have been observed in the pulsed jet. Based on relative intensity measurements, the s-cis to the s-trans population ratio was experimentally estimated to be âˆ¼ 1:1.2. Subsequently, a comparison of the non-covalent interactions was carried out between the three similar complexes, acrylic acid-water, methacrylic acid-water, and 2-(trifluoromethyl)acrylic acid-water, offering quantitative insights into fluorination affecting the strength of the formed hydrogen bonds important, e.g., in molecular recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA