Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1322509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389795

RESUMO

As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.

2.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362131

RESUMO

Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.


Assuntos
Encéfalo , Corrida , Animais , Encéfalo/fisiologia , Corrida/fisiologia , Plasticidade Neuronal/fisiologia , Cognição , Afeto , Estresse Psicológico/complicações
3.
Nutrients ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35565902

RESUMO

The increasing consumption of highly processed foods with high amounts of saturated fatty acids and simple carbohydrates is a major contributor to the burden of overweight and obesity. Additionally, an unhealthy diet in combination with chronic stress exposure is known to be associated with the increased prevalence of central nervous system diseases. In the present study, the global brain proteome approach was applied to explore protein alterations after exposure to the Western diet and/or stress. Female adult rats were fed with the Western diet with human snacks and/or subjected to chronic stress induced by social instability for 12 weeks. The consumption of the Western diet resulted in an obese phenotype and induced changes in the serum metabolic parameters. Consuming the Western diet resulted in changes in only 5.4% of the proteins, whereas 48% of all detected proteins were affected by chronic stress, of which 86.3% were down-regulated due to this exposure to chronic stress. However, feeding with a particular diet modified stress-induced changes in the brain proteome. The down-regulation of proteins involved in axonogenesis and mediating the synaptic clustering of AMPA glutamate receptors (Nptx1), as well as proteins related to metabolic processes (Atp5i, Mrps36, Ndufb4), were identified, while increased expression was detected for proteins involved in the development and differentiation of the CNS (Basp1, Cend1), response to stress, learning and memory (Prrt2), and modulation of synaptic transmission (Ncam1, Prrt2). In summary, global proteome analysis provides information about the impact of the combination of the Western diet and stress exposure on cerebrocortical protein alterations and yields insight into the underlying mechanisms and pathways involved in functional and morphological brain alterations as well as behavioral disturbances described in the literature.


Assuntos
Dieta Ocidental , Proteoma , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Fast Foods , Feminino , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Proteoma/metabolismo , Ratos , Lobo Temporal/metabolismo
4.
Nutrients ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959794

RESUMO

BACKGROUND: In the pathogenesis of central nervous system disorders (e.g., neurodegenerative), an important role is attributed to an unhealthy lifestyle affecting brain energy metabolism. Physical activity in the prevention and treatment of lifestyle-related diseases is getting increasing attention. METHODS: We performed a series of assessments in adult female Long Evans rats subjected to 6 weeks of Western diet feeding and wheel-running training. A control group of lean rats was fed with a standard diet. In all experimental groups, we measured physiological parameters (animal weights, body composition, serum metabolic parameters). We assessed the impact of simultaneous exposure to a Western diet and wheel-running on the cerebrocortical protein expression (global proteomic profiling), and in the second part of the experiment, we measured the cortical levels of protein related to brain metabolism (Western blot). RESULTS: Western diet led to an obese phenotype and induced changes in the serum metabolic parameters. Wheel-running did not reduce animal weights or fat mass but significantly decreased serum glucose level. The global proteome analysis revealed that the altered proteins were functionally annotated as they were involved mostly in metabolic pathways. Western blot analysis showed the downregulation of the mitochondrial protein-Acyl-CoA dehydrogenase family member 9, hexokinase 1 (HK1)-enzyme involved in principal glucose metabolism pathways and monocarboxylate transporter 2 (MCT2). Wheel-running reversed this decline in the cortical levels of HK1 and MCT2. CONCLUSION: The cerebrocortical proteome is affected by a combination of physical activity and Western diet in female rats. An analysis of the cortical proteins involved in brain energy metabolism provides a valuable basis for the deeper investigation of changes in the brain structure and function induced by simultaneous exposure to a Western diet and physical activity.


Assuntos
Encéfalo/metabolismo , Dieta Ocidental/efeitos adversos , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Redes e Vias Metabólicas/fisiologia , Obesidade/fisiopatologia , Proteoma/metabolismo , Proteômica , Ratos , Ratos Long-Evans
5.
Front Cell Neurosci ; 15: 733607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456688

RESUMO

Experimental and clinical data support the neuroprotective properties of the ketogenic diet and ketone bodies, but there is still a lot to discover to comprehensively understand the underlying mechanisms. Autophagy is a key mechanism for maintaining cell homeostasis, and therefore its proper function is necessary for preventing accelerated brain aging and neurodegeneration. Due to many potential interconnections, it is possible that the stimulation of autophagy may be one of the mediators of the neuroprotection afforded by the ketogenic diet. Recent studies point to possible interconnections between ketone body metabolism and autophagy. It has been shown that autophagy is essential for hepatic and renal ketogenesis in starvation. On the other hand, exogenous ketone bodies modulate autophagy both in vitro and in vivo. Many regional differences occur between brain structures which concern i.e., metabolic responses and autophagy dynamics. The aim of the present study was to evaluate the influence of the ketogenic diet on autophagic markers and the ketone body utilizing and transporting proteins in the hippocampus and frontal cortex. C57BL/6N male mice were fed with two ketogenic chows composed of fat of either animal or plant origins for 4 weeks. Markers of autophagosome formation as well as proteins associated with ketolysis (BDH1-3-hydroxybutyrate dehydrogenase 1, SCOT/OXCT1-succinyl CoA:3-oxoacid CoA transferase), ketone transport (MCT1-monocarboxylate transporter 1) and ketogenesis (HMGCL, HMGCS2) were measured. The hippocampus showed a robust response to nutritional ketosis in both changes in the markers of autophagy as well as the levels of ketone body utilizing and transporting proteins, which was also accompanied by increased concentrations of ketone bodies in this brain structure, while subtle changes were observed in the frontal cortex. The magnitude of the effects was dependent on the type of ketogenic diet used, suggesting that plant fats may exert a more profound effect on the orchestrated upregulation of autophagy and ketone body metabolism markers. The study provides a foundation for a deeper understanding of the possible interconnections between autophagy and the neuroprotective efficacy of nutritional ketosis.

6.
Postepy Biochem ; 67(2): 177-192, 2021 06 30.
Artigo em Polonês | MEDLINE | ID: mdl-34378895

RESUMO

Aging is a multifunctional process which is characterized by many changes on molecular, cellular and tissue levels. The chronic, sterile and low-grade inflammation process, that occurs during aging is referred to as 'inflammaging'. Inflammaging is mentioned as a risk factor for the onset and progression of chronic diseases, not only age-related. Inflammaging contributes to increased morbidity and mortality in elderly individuals, and also affects the lifespan and quality of life. Cell senescence and disturbances in the regulation of inflammasome activation, mitochondrial function, autophagy and mitophagy, ubiquitin-proteasome system and the response to DNA damage contribute to the development of inflammaging. The above processes interact with each other and are modulated by signaling pathways involved in the regulation of the inflammatory response, i.e. NF-kB, mTOR, RIG-I, Notch, TGF-b, Ras pathways, and regulation of sirtuin activity. The aim of the study is to present the processes and signaling pathways underlying inflammaging, including clinical and experimental studies.


Assuntos
Inflamação , Qualidade de Vida , Idoso , Envelhecimento , Senescência Celular , Humanos , Longevidade
7.
Brain Behav Immun ; 96: 212-226, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087424

RESUMO

OBJECTIVE: Obesity is a multidimensional condition that is treatable by the restoration of a lean phenotype; however, some obesity-related outcomes may persist after weight normalization. Among the organs of the human body, the brain possesses a relatively low regenerative capacity and could retain perturbations established as a result of developmental obesity. Calorie restriction (CR) or a restricted ketogenic diet (KD) are successfully used as weight loss approaches, but their impact on obesity-related effects in the brain have not been previously evaluated. METHODS: We performed a series of experiments in a rat model of developmental obesity induced by a 12-week cafeteria diet, followed by CR to implement weight loss. First, we assessed the impact of obesity on neurogenesis (BrdU incorporation into the hippocampus), cognitive function (water maze), and concomitant changes in hippocampal protein expression (GC/MS-MS, western blot). Next, we repeated these experiments in a rat model of weight loss induced by CR. We also measured mitochondrial enzyme activity in rats after weight loss during the fed or fasting state. This study was extended by additional experiments with restricted KD used as a weight loss approach in order to compare the efficacy of two different nutritional interventions used in the treatment of obesity on hippocampal functions. By using a modified version of the water maze we evaluated cognitive abilities in rats subjected to weight loss by CR or a restricted KD. RESULTS: In this study, obesity affected metabolic processes, upregulated hippocampal NF-κB, and induced proteomic differences which were associated with impaired cognition and neurogenesis. Weight loss improved neurogenesis and enhanced cognition. While the expression pattern of some proteins persisted after weight loss, most of the changes appeared de novo revealing metabolic adjustment by overactivation of citrate synthase and downregulation of ATP synthase. As a consequence of fasting, the activity of these enzymes indicated hippocampal adaptation to negative energy balance during the weight loss phase of CR. Moreover, the effects on cognitive abilities measured after weight loss were negatively correlated with the animal weight measured at the final stage of weight gain. This was alleviated by KD, which improved cognition when used as a weight loss approach. CONCLUSIONS: The study shows that cognition and mitochondrial metabolism in the hippocampus are affected by CR- or KD-induced weight loss.


Assuntos
Proteômica , Redução de Peso , Animais , Restrição Calórica , Hipocampo , Obesidade/complicações , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA