Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169173, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38064809

RESUMO

In mammals, parental exposure to amitriptyline (AMI) has been proven to contribute to congenital disabilities in their offspring. However, no studies have paid attention to the adverse effects of parental exposure to amitriptyline on fish offspring. In this study, we exposed adult zebrafish (F0) to AMI (0.8 µg/L) for 21 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water for 5 days. The mortality rate, average hatching time, and heart rate at 48 h post-fertilization (hpf) of F1 were investigated. Our results showed that parental exposure to AMI induced tachycardia and increased mortality in F1 zebrafish. Under a light/dark transition test, F1 larvae born from AMI-exposed parents exhibited lower locomotor activity in the dark period and decreased thigmotaxis in the light period. The transcriptome analysis showed that parental AMI exposure dysregulated some key pathways in their offspring. Through the prediction of key driver analysis, six differentially expressed genes (DEGs) were revealed as key driver genes involved in protein processing in endoplasmic reticulum (hspa5, hsp70.1, hsp90a), ribosome (rps27a) and PPAR signaling pathway (pparab and fabp2). Considering that the concentration of AMI residual components in natural water bodies may be over our test concentration (0.8 µg/L), our findings suggested that toxicity of parental exposure to the offspring of fish should receive greater attention.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Amitriptilina/toxicidade , Amitriptilina/metabolismo , Poluentes Químicos da Água/metabolismo , Larva , Perciformes/metabolismo , Expressão Gênica , Água/metabolismo , Mamíferos/metabolismo
2.
Water Sci Technol ; 88(11): 2751-2761, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096066

RESUMO

The growing concerns surrounding water pollution and the degradation of ecosystems worldwide have led to an increased use of nature-based solutions (NbSs). This study assessed the feasibility of using floating treatment wetlands (FTWs) as an NbS to treat propylene glycol-contaminated water and quantitatively investigated different removal pathways. With an environmentally relevant concentration of propylene glycol (1,250 mg/L), FTWs containing Acorus calamus and mixed species demonstrated the highest average glycol mass removal efficacy (99%), followed by Carex acutiformis (98%), Juncus effusus (93%), and the control group without plants (10%) after 1 week. Additional mesocosm-scale experiments with varying FTW configurations, including surface coverage to reduce evaporation and photodegradation processes, and the addition of antibiotics to inhibit microbial activity, were conducted to quantify glycol removal pathways. Mass balance analysis results revealed that microbial biodegradation (33.3-39.7%) and plant uptake (37.9-45.2%) were the primary pathways for glycol removal. Only 15.5-19.5% of the glycol removal via evaporation and photodegradation was accounted in this study, which may be attributed to the mesocosm experimental setup (static water and no wind). Aligned with the broader discussion regarding biodiversity improvements and carbon storage capacity, this study demonstrated that FTWs are an environmentally friendly and effective NbS for addressing glycol-contaminated water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Áreas Alagadas , Ecossistema , Fósforo/análise , Poluição da Água/análise , Plantas/metabolismo , Biodegradação Ambiental , Glicóis/metabolismo , Propilenoglicóis/metabolismo , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 849: 157826, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35932859

RESUMO

Rivers are dynamic landscape features that change in response to natural and anthropogenic factors through hydrological, geomorphic and ecological processes. The severity and magnitude of human impacts on river system and riparian vegetation has dramatically increased over the last century with the proliferation of valley-spanning dams, intensification of agriculture, urbanization, and more widespread channel engineering. This study aims to determine how changes in geomorphic form and dynamics caused by these human alterations relate to changes in channels and riparian vegetation in the lower Beas and Sutlej Rivers. These rivers are tributaries of the Indus that drain the Western Himalayas but differ in the type and magnitude of geomorphic change in recent decades. Winter season vegetation was analysed over 30 years, revealing increasing trends in vegetated land cover in the valleys of both rivers, consistent with large-scale drivers of change. Greater trends within the active channels indicate upstream drivers are influencing river flow and geomorphology, vegetation growth and human exploitation. The spatial patterns of vegetation change differ between the rivers, emphasizing how upstream human activities (dams and abstraction) control geomorphic and vegetation community response within the landscape context of the river. The increasing area of vegetated land is reinforcing the local evolutionary trajectory of the river planform from wide-braided wandering to single thread meandering. Narrowing of the active channels is altering the balance of resource provision and risk exposure to people. New areas being exploited for agriculture are exposed to greater risk from river erosion, inundation, and sediment deposition. Moreover, the change from braided to meandering planform has concentrated erosion on riverbanks, placing communities and infrastructure at risk. By quantifying and evaluating the spatial variations in vegetation cover around these rivers, we can better understand the interaction of vegetation and geomorphology alongside the impacts of human activity and climate change in these, and many similar, large systems, which can inform sustainable development.


Assuntos
Hidrologia , Rios , Agricultura , Mudança Climática , Ecossistema , Humanos , Urbanização
4.
ACS Omega ; 7(4): 3185-3191, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128231

RESUMO

The stepwise hydration of clay minerals has been observed repeatedly in studies, but the underlying mechanism remains unclear. Previous numerical studies confirmed the presence of one-water layer (1W) and two-water layer (2W) hydration states. However, the undisturbed transition between these hydration states has never been captured. Using molecular dynamics simulation, this study (i) simulated for the first time the free 1W-2W transition during clay hydration and (ii) identified the underlying mechanism to be the detachment of cations from the clay surface and the formation of a shell of water molecules around the cation. The swelling dynamics of clay was found to be affected by the clay charge, clay mineralogy, and counterions through complex cation-clay interactions, cation hydration capacity, and cation migration rate.

5.
Proc Biol Sci ; 287(1931): 20201147, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32673561

RESUMO

Global climate change is expected to impact hydrodynamic conditions in stream ecosystems. There is limited understanding of how stream ecosystems interact and possibly adapt to novel hydrodynamic conditions. Combining mathematical modelling with field data, we demonstrate that bio-physical feedback between plant growth and flow redistribution triggers spatial self-organization of in-channel vegetation that buffers for changed hydrological conditions. The interplay of vegetation growth and hydrodynamics results in a spatial separation of the stream into densely vegetated, low-flow zones divided by unvegetated channels of higher flow velocities. This self-organization process decouples both local flow velocities and water levels from the forcing effect of changing stream discharge. Field data from two lowland, baseflow-dominated streams support model predictions and highlight two important stream-level emergent properties: vegetation controls flow conveyance in fast-flowing channels throughout the annual growth cycle, and this buffering of discharge variations maintains water depths and wetted habitat for the stream community. Our results provide important evidence of how plant-driven self-organization allows stream ecosystems to adapt to changing hydrological conditions, maintaining suitable hydrodynamic conditions to support high biodiversity.


Assuntos
Mudança Climática , Hidrodinâmica , Rios , Ecossistema , Modelos Teóricos
6.
Sci Total Environ ; 609: 1544-1555, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28810506

RESUMO

Anastomosing rivers were historically common around the world before extensive agricultural and industrial development in river valleys. Few lowland anastomosing rivers remain in temperate zones, and the protection of these river-floodplain systems is an international conservation priority. However, the mechanisms that drive the creation and maintenance of multiple channels, i.e. anabranches, are not well understood, particularly for lowland rivers, making it challenging to identify effective management strategies. This study uses a novel multi-scale, process-based hydro-geomorphological approach to investigate the natural and anthropogenic controls on anastomosis in lowland river reaches. Using a wide range of data (hydrologic, cartographic, remote-sensing, historical), the study (i) quantifies changes in the planform of the River Narew, Poland over the last 100years, (ii) documents changes in the natural and anthropogenic factors that could be driving the geomorphic change, and (iii) develops a conceptual model of the controls of anastomosis. The results show that 110km of anabranches have been lost from the Narew National Park (6810ha), a 42% reduction in total anabranch length since 1900. The rates of anabranch loss have increased as the number of pressures inhibiting anabranch creation and maintenance has multiplied. The cessation of localized water level and channel management (fishing dams, water mills and timber rafting), the loss of traditional floodplain activities (seasonal mowing) and infrastructure construction (embanked roads and an upstream dam) are contributing to low water levels and flows, the deposition of sediment at anabranch inlets, the encroachment of common reed (Phragmites australis), and the eventual loss of anabranches. By identifying the processes driving the loss of anabranches, this study provides transferable insights into the controls of anastomosis in lowland rivers and the management solutions needed to preserve the unique anastomosing river pattern and diverse wet grasslands that are central to the conservation value of lowland floodplains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA