Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 279: 104-115, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883566

RESUMO

Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity.


Assuntos
Microtúbulos/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neurotransmissores/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , Epotilonas/farmacologia , Epotilonas/toxicidade , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Masculino , Neuropeptídeos/biossíntese , Paclitaxel/farmacologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
2.
Nat Commun ; 5: 3506, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24667291

RESUMO

The surface of developing axons expands in a process mediated by the exocyst complex. The spatio-temporal regulation of the exocyst is only partially understood. Here we report that stimulated membrane enlargement in dorsal root ganglion (DRG) axons is triggered by intra-axonal synthesis of TC10, a small GTPase required for exocyst function. Induced membrane expansion and axon outgrowth are inhibited after axon-specific knockdown of TC10 mRNA. To determine the relationship of intra-axonal TC10 synthesis with the previously described stimulus-induced translation of the cytoskeletal regulator Par3, we investigate the signalling pathways controlling their local translation in response to NGF. Phosphoinositide 3-kinase (PI3K)-dependent activation of the Rheb-mTOR pathway triggers the simultaneous local synthesis of TC10 and Par3. These results reveal the importance of local translation in the control of membrane dynamics and demonstrate that localized, mTOR-dependent protein synthesis triggers the simultaneous activation of parallel pathways.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/genética , Gânglios Espinais/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Proteínas rho de Ligação ao GTP/genética , Animais , Axônios/efeitos dos fármacos , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , RNA Mensageiro/efeitos dos fármacos , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas rho de Ligação ao GTP/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo
3.
Exp Neurol ; 253: 146-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374060

RESUMO

Peripheral neuropathy (PN) is a debilitating and dose-limiting side effect of treatment with the chemotherapeutic agent, paclitaxel. Understanding the effects of paclitaxel on sensory neuronal function and the signaling pathways which mediate these paclitaxel-induced changes in function are critical for the development of therapies to prevent or alleviate the PN. The effects of long-term administration of paclitaxel on the function of sensory neurons grown in culture, using the release of the neuropeptide calcitonin gene-related peptide (CGRP) as an endpoint of sensory neuronal function, were examined. Dorsal root ganglion cultures were treated with low (10 nM) and high (300 nM) concentrations of paclitaxel for 1, 3, or 5 days. Following paclitaxel treatment, the release of CGRP was determined using capsaicin, a TRPV1 agonist; allyl isothiocyanate (AITC), a TRPA1 agonist; or high extracellular potassium. The effects of paclitaxel on the release of CGRP were stimulant-, concentration-, and time-dependent. When neurons were stimulated with capsaicin or AITC, a low concentration of paclitaxel (10nM) augmented transmitter release, whereas a high concentration (300 nM) reduced transmitter release in a time-dependent manner; however, when high extracellular potassium was used as the evoking stimulus, all concentrations of paclitaxel augmented CGRP release from sensory neurons. These results suggest that paclitaxel alters the function of sensory neurons in vitro, and suggest that the mechanisms by which paclitaxel alters neuronal function may include functional changes in TRP channel activity. The described in vitro model will facilitate future studies to identify the signaling pathways by which paclitaxel alters neuronal sensitivity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Paclitaxel/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Gânglios Espinais/citologia , Peróxido de Hidrogênio/farmacologia , Isotiocianatos/farmacologia , Masculino , Oxidantes/farmacologia , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/agonistas , Fatores de Tempo
4.
J Pain ; 10(7): 702-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19559389

RESUMO

UNLABELLED: Subcutaneous injection of endothelin-1 (ET-1) into the glabrous skin of the rat's hind paw is known to produce impulses in nociceptors and acute nocifensive behavioral responses, such as hind paw flinching, and to sensitize the skin to mechanical and thermal stimulation. In this report, we show that in contrast to the responses in glabrous skin, ET-1 injected subcutaneously into rat hairy skin causes transient antinociception. Concentrations of 1 to 50 microM ET-1 (in 0.05 mL) depress the local nocifensive response to noxious tactile probing at the injection site with von Frey filaments for 30 to 180 minutes; distant injections have no effect at this site, showing that the response is local. Selective inhibition of ET(A) but not of ET(B) receptors inhibits this antinociception, as does coinjection with nimodipine (40 muM), a blocker of L-type Ca(2+) channels. Local subcutaneous injection of epinephrine (45 microM) also causes antinociception through alpha-1 adrenoreceptors, but such receptors are not involved in the ET-1-induced effect. Both epinephrine and ET-1, at antinociceptive concentrations, reduce blood flow in the skin; the effect from ET-1 is largely prevented by subcutaneous nimodipine. These data suggest that ET-1-induced antinociception in the hairy skin of the rat involves cutaneous vasoconstriction, presumably through neural ischemia, resulting in conduction block. PERSPECTIVE: The pain-inducing effects of ET-1 have been well documented in glabrous skin of the rat, a frequently used test site. The opposite behavioral effect, antinociception, occurs from ET-1 in hairy skin and is correlated with a reduction in blood flow. Vasoactive effects are important in assessing mechanisms of peripherally acting agents.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Endotelina-1/uso terapêutico , Dor/tratamento farmacológico , Pele/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Epinefrina/farmacologia , Cabelo , Masculino , Antagonistas de Entorpecentes , Nimodipina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/metabolismo , Receptores Opioides/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Pele/irrigação sanguínea , Pele/fisiopatologia , Taquifilaxia
5.
Pain ; 144(1-2): 178-86, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19443120

RESUMO

Protein kinase signal transduction pathways play critical roles in regulating nociception. Here we show that c-kit, a tyrosine kinase receptor, is expressed in lamina I and II layer of the dorsal horn. Moreover, the superficial c-kit(+) fibers originate from the dorsal root ganglion, and c-kit in lamina II inner layer comes from intrinsic expression of the spinal cord. Kit(W-v) mice, which contain a hypomorphic mutation, exhibited normal acute pain in most pain behavior tests. In the formalin test, the first phase was not affected, whereas the second phase pain response of Kit(W-v) mice was significantly reduced relative to wild-type littermates. Kit(W-v) mice also showed abnormal neuropathic pain, notably in the contralateral side of nerve injury. The expression and release of CGRP and substance P were not altered by the c-kit mutation. Together, these results implicate c-kit-mediated signal transduction in the development of persistent pain.


Assuntos
Hiperalgesia/fisiopatologia , Dor/etiologia , Dor/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Constrição Patológica/complicações , Feminino , Gânglios Espinais/citologia , Hiperalgesia/classificação , Hiperalgesia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Dor/genética , Dor/patologia , Medição da Dor/métodos , Estimulação Física/métodos , Mutação Puntual/genética , Proteínas Proto-Oncogênicas c-kit/genética , Radioimunoensaio/métodos , Rizotomia/efeitos adversos , Medula Espinal/metabolismo , Substância P/genética , Substância P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA