Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(3): 038002, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386474

RESUMO

Recent experiments with rotational diffusion of a probe in a vibrated granular media revealed a rich scenario, ranging from a dilute gas to a dense liquid with cage effects and an unexpected superdiffusive behavior at large times. Here we set up a simulation that reproduces quantitatively the experimental observations and allows us to investigate the properties of the host granular medium, a task not feasible in the experiment. We discover a persistent collective rotational mode which emerges at a high density and a low granular temperature: a macroscopic fraction of the medium slowly rotates, randomly switching direction after very long times. Such a rotational mode of the host medium is the origin of the probe's superdiffusion. Collective motion is accompanied by a kind of dynamical heterogeneity at intermediate times (in the cage stage) followed by a strong reduction of fluctuations at late times, when superdiffusion sets in.

2.
Artigo em Inglês | MEDLINE | ID: mdl-24827191

RESUMO

We study the behavior of a moving wall in contact with a particle gas and subjected to an external force. We compare the fluctuations of the system observed in the microcanonical and canonical ensembles, by varying the number of particles. Static and dynamic correlations signal significant differences between the two ensembles. Furthermore, velocity-velocity correlations of the moving wall present a complex two-time relaxation that cannot be reproduced by a standard Langevin-like description. Quite remarkably, increasing the number of gas particles in an elongated geometry, we find a typical time scale, related to the interaction between the partitioning wall and the particles, which grows macroscopically.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 1): 031112, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587043

RESUMO

We study the stationary state of a one-dimensional kinetic model where a probe particle is driven by an external field E and collides, elastically or inelastically, with a bath of particles at temperature T. We focus on the stationary distribution of the velocity of the particle, and of two estimates of the total entropy production Δs(tot). One is the entropy production of the medium Δs(m), which is equal to the energy exchanged with the scatterers, divided by a parameter θ, coinciding with the particle temperature at E=0. The other is the work W done by the external field, again rescaled by θ. At small E, a good collapse of the two distributions is found: in this case, the two quantities also verify the fluctuation relation (FR), indicating that both are good approximations of Δs(tot). Differently, for large values of E, the fluctuations of W violate the FR, while Δs(m) still verifies it.


Assuntos
Gases/química , Modelos Químicos , Modelos Estatísticos , Processos Estocásticos , Simulação por Computador , Cinética , Dinâmica não Linear , Temperatura
4.
Phys Rev Lett ; 105(5): 055703, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867935

RESUMO

We study dynamic heterogeneities in a model glass former whose overlap with a reference configuration is constrained to a fixed value. We find that the system phase separates into regions of small and large overlap, indicating that a nonzero surface tension plays an important role in the formation of dynamical heterogeneities. We calculate an appropriate thermodynamic potential and find evidence of a Maxwell construction consistent with a spinodal decomposition of two phases. Our results suggest that even in standard, unconstrained systems dynamic heterogeneities are the expression of an ephemeral phase-separating regime ruled by a finite surface tension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA