RESUMO
Background Housing conditions are intrinsically linked to human health, with inadequate housing potentially increasing exposure to environmentally mediated pathogens. Housing interventions that aim to improve housing and reduce environmentally mediated infections, such as finished floors and housing upgrades for vector-borne diseases, remain relatively under-explored as health interventions. This study explored facilitators of and barriers to funding, implementing, and scaling up housing improvements as health interventions to reduce environmentally mediated infectious diseases. Methods Sixteen key informants (KIs) with direct experience in implementing or working within housing interventions and environmentally mediated infectious diseases in low- and middle-income countries were interviewed using a semi-structured interview format. KIs had diverse backgrounds, including academics researching housing interventions, housing policy advisors, and practitioners implementing housing interventions. A thematic analysis approach was used to identify key themes in interview transcripts, highlighting patterns, commonalities, and variations in participants' responses. Results KIs emphasized the multi-dimensional impacts of housing interventions that are intrinsically linked to Sustainable Development Goals (SDGs), including physical and mental health, as well as environmental, social, and economic dimensions. Moreover, a pronounced shortage of funding and financial systems to address housing interventions was highlighted, alongside the urgent need for more rigorous evidence and cost-benefit analyses. Furthermore, the imperative to raise awareness of the significance of housing and the critical importance of strong collaboration across sectors and stakeholders were stressed. Emphasizing the necessity for project-based and context-specific housing policies, the interviews revealed that contextualizing interventions to their specific setting and fostering community involvement are essential for successful implementation and scale-up. Conclusions Housing interventions play a pivotal role in mitigating environmentally mediated diseases. These interventions can complement existing strategies like water, sanitation, and hygiene (WASH) interventions, ensuring comprehensive approaches to healthy housing and sustainable development goals amidst climate change.
RESUMO
Antibiotic resistance (ABR) is a critical and growing global challenge, especially in low- and middle-income countries. Ecuador has made great progress in connecting households to piped water supplies; however, the collection and treatment of domestic wastewater has lagged. This infrastructural gap may be accelerating the spread of ABR into surface waters used downstream for irrigation. We studied the contributions of a small town in Ecuador to the prevalence of extended-spectrum ß-lactamase-producing Escherichia coli in a glacial stream used for irrigating crops. The study analyzed water samples upstream (n = 60) and downstream (n = 60) of the town of Píntag as well as 30 lettuce samples irrigated by surface waters downstream of the town. A subset of third generation cephalosporin resistant E. coli (3GCR-EC) isolates (n = 58) were sequenced to characterize antibiotic resistance genes and pathogenic lineages. Our results showed that there was nearly a three-log increase in mean E. coli colony forming units in the downstream samples versus upstream. At the upstream sites above the town of Píntag, 6.7% of water samples were positive for 3GCR-EC compared to 100% of samples collected at the downstream sites. Additionally, 70.1% of sequenced 3GCR-EC isolates collected at downstream sites carried blaCTX-M genes and 3.4% belonged to pandemic lineages ST131 and ST10. As countries develop household piped water infrastructure, attention should focus on how the lack of domestic wastewater collection and treatment may accelerate the spread of ABR in waterways and the food system.
RESUMO
Background: Housing conditions are intrinsically linked to human health, with inadequate housing potentially increasing exposure to environmentally mediated pathogens. Housing interventions that aim to improve housing and reduce environmentally mediated infections, such as finished floors and housing upgrades for vector-borne diseases, remain relatively under-explored as health interventions. This study explored facilitators of and barriers to funding, implementing, and scaling up housing improvements as health interventions to reduce environmentally mediated infectious diseases. Methods: Sixteen key informants (KIs) with direct experience in implementing or working within housing interventions and environmentally mediated infectious diseases in low- and middle-income countries were interviewed using a semi-structured interview format. KIs had diverse backgrounds, including academics researching housing interventions, housing policy advisors, and practitioners implementing housing interventions. A thematic analysis approach was used to identify key themes in interview transcripts, highlighting patterns, commonalities, and variations in participants' responses. Results: KIs emphasized the multi-dimensional impacts of housing interventions that are intrinsically linked to Sustainable Development Goals (SDGs), including physical and mental health, as well as environmental, social, and economic dimensions. Moreover, a pronounced shortage of funding and financial systems to address housing interventions was highlighted, alongside the urgent need for more rigorous evidence and cost-benefit analyses. Furthermore, the imperative to raise awareness of the significance of housing and the critical importance of strong collaboration across sectors and stakeholders were stressed. Emphasizing the necessity for project-based and context-specific housing policies, the interviews revealed that contextualizing interventions to their specific setting and fostering community involvement are essential for successful implementation and scale-up. Conclusions: Housing interventions play a pivotal role in mitigating environmentally mediated diseases. These interventions can complement existing strategies like water, sanitation, and hygiene (WASH) interventions, ensuring comprehensive approaches to healthy housing and sustainable development goals amidst climate change.
RESUMO
BACKGROUND: Antibiotic resistance of Enterobacterales poses a major challenge in the treatment of urinary tract infections (UTIs). In low- and middle-income countries (LMICs), standard microbiological (i.e. urine culture and simple disk diffusion test) methods are considered the "gold standard" for bacterial identification and drug susceptibility testing, while PCR and DNA sequencing are less commonly used. In this study, we aimed to re-identifying Enterobacterales as the primary bacterial agents responsible for urinary tract infections (UTIs) by comparing the sensitivity and specificity of traditional microbiological methods with advanced molecular techniques for the detection of uropathogens in indigenous women from Otavalo, Ecuador. METHODS: A facility-based cross-sectional study was conducted from October 2021 to February 2022 among Kichwa-Otavalo women. Pathogens from urine samples were identified using culture and biochemical typing. Morphological identification was doble-checked through PCR and DNA sequencing of 16S, recA, and rpoB molecular barcodes. The isolates were subjected to antimicrobial susceptibility-testing using disk diffusion test. RESULTS: This study highlighted a 32% misidentification rate between biochemical and molecular identification. Using traditional methods, E. coli was 26.19% underrepresented meanwhile Klebsiella oxytoca was overrepresented by 92.86%. Furthermore, the genera Pseudomonas, Proteus, and Serratia were confirmed to be E. coli and Klebsiella spp. by molecular method, and one Klebsiella spp. was reidentified as Enterobacter spp. The susceptibility profile showed that 59% of the isolates were multidrug resistant strains and 31% produced extended spectrum beta-lactamases (ESBLs). Co-trimoxazole was the least effective antibiotic with 61% of the isolates resistant. Compared to previous reports, resistance to nitrofurantoin and fosfomycin showed an increase in resistance by 25% and 15%, respectively. CONCLUSIONS: Community-acquired UTIs in indigenous women in Otavalo were primarily caused by E. coli and Klebsiella spp. Molecular identification (16S/rpoB/recA) revealed a high rate of misidentification by standard biochemical and microbiological techniques, which could lead to incorrect antibiotic prescriptions. UTI isolates in this population displayed higher levels of resistance to commonly used antibiotics compared with non-indigenous groups. Accurate identification of pathogens causing UTIs and their antibiotic susceptibility in local populations is important for local antibiotic prescribing guidelines.
Assuntos
Antibacterianos , Infecções Urinárias , Humanos , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Feminino , Equador/epidemiologia , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Adulto , Testes de Sensibilidade Microbiana , Povos Indígenas , Farmacorresistência Bacteriana/genética , Pessoa de Meia-Idade , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Adulto Jovem , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologiaRESUMO
There is little information available on antibiotic resistance (ABR) within shrimp aquaculture environments. The aim of this study was to investigate the presence of antibiotic resistance genes (ARGs) in shrimp farming operations in Atacames, Ecuador. Water samples (n = 162) and shrimp samples (n = 54) were collected from three shrimp farming operations. Samples were cultured and a subset of isolates that grew in the presence of ceftriaxone, a third-generation cephalosporin, were analyzed using whole-genome sequencing (WGS). Among the sequenced isolates (n = 44), 73% of the isolates contained at least one ARG and the average number of ARGs per isolate was two, with a median of 3.5 ARGs. Antibiotic resistance genes that confer resistance to the ß-lactam class of antibiotics were observed in 65% of the sequenced isolates from water (20/31) and 54% of the isolates from shrimp (7/13). We identified 61 different ARGs across the 44 sequenced isolates, which conferred resistance to nine antibiotic classes. Over half of all sequenced isolates (59%, n = 26) carried ARGs that confer resistance to more than one class of antibiotics. ARGs for certain antibiotic classes were more common, including beta-lactams (26 ARGs); aminoglycosides (11 ARGs); chloramphenicol (three ARGs); and trimethoprim (four ARGs). Sequenced isolates consisted of a diverse array of bacterial orders and species, including Escherichia coli (48%), Klebsiella pneumoniae (7%), Aeromonadales (7%), Pseudomonadales (16%), Enterobacter cloacae (2%), and Citrobacter freundii (2%). Many ARGs were shared across diverse species, underscoring the risk of horizontal gene transfer in these environments. This study indicated the widespread presence of extended-spectrum ß-lactamase (ESBL) genes in shrimp aquaculture, including blaCTX-M, blaSHV, and blaTEM genes. Increased antibiotic resistance surveillance of shrimp farms and identification of aquaculture operation-level risk factors, such as antibiotic use, will likely be important for mitigating the spread of ARGs of clinical significance.
RESUMO
PURPOSE: Evaluate the safety/efficacy of novel potassium binders (patiromer, sodium zirconium cyclosilicate [SZ-9]) for early postoperative hyperkalemia following kidney transplantation. METHODS: Retrospective, single-center, cohort study of deceased-donor kidney recipients transplanted between 1/2018 and 12/2020. Potassium-binder use was evaluated from immediately posttransplant until discharge. Potassium binders were administered ≥2 hours before/after medications. RESULTS: A total of 179 patients were included, 24 (13%) of whom received potassium binders (16 [67%] patiromer, 7 [29%] SZ-9, 1 [4%] both) for a mean of 2.5 (±3.18) doses. Peak potassium levels were higher in the potassium-binder group (6.05 vs 5.35 mEq/L; P < .001). More patients on potassium binders transitioned to atovaquone than those on no binders (n = 21 [100%] vs n = 112 [75%], respectively; P = .005). Delayed graft function (DGF) was observed in 100 (56%) patients, with a higher proportion receiving potassium binders (18 [75%] vs 82 [53%], respectively; P = .042). There was no difference between groups in number of posttransplant dialysis sessions required in the general study population (P = .2), nor in the DGF group (P = .12). No difference was noted in the incidence of ileus (P = .2), or gastrointestinal symptoms (diarrhea, nausea, vomiting; P = .6). Of the 24 patients who received inpatient binders, 9 (37.5%) were discharged and remained on them for a mean of 46 (±49) days. CONCLUSION: Patiromer and SZ-9 appear safe in the early posttransplant period, but larger prospective trials are needed. Potassium-binder use does not appear to be associated with fewer dialysis sessions in DGF patients, however, they may be used as additional tools for lowering potassium in these patients.
Assuntos
Hiperpotassemia , Transplante de Rim , Polímeros , Complicações Pós-Operatórias , Potássio , Silicatos , Humanos , Hiperpotassemia/sangue , Hiperpotassemia/etiologia , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Potássio/sangue , Silicatos/uso terapêutico , Silicatos/efeitos adversos , Polímeros/uso terapêutico , Adulto , Função Retardada do Enxerto , IdosoRESUMO
Colistin is one of the last-line treatments for multi-drug resistant Gram-negative bacterial infections. The emergence of mobile colistin resistance genes has driven global concern and triggered the need for surveillance. Our report reveals the identification of mcr-9.1 and mcr-10.1 in Ecuador by employing a proximity ligation technique.
RESUMO
Background: Water, sanitation, hygiene (WSH), nutrition (N), and combined (N+WSH) interventions are often implemented by global health organizations, but WSH interventions may insufficiently reduce pathogen exposure, and nutrition interventions may be modified by environmental enteric dysfunction (EED), a condition of increased intestinal permeability and inflammation. This study investigated the heterogeneity of these treatments' effects based on individual pathogen and EED biomarker status with respect to child linear growth. Methods: We applied cross-validated targeted maximum likelihood estimation and super learner ensemble machine learning to assess the conditional treatment effects in subgroups defined by biomarker and pathogen status. We analyzed treatment (N+WSH, WSH, N, or control) randomly assigned in-utero, child pathogen and EED data at 14 months of age, and child LAZ at 28 months of age. We estimated the difference in mean child length for age Z-score (LAZ) under the treatment rule and the difference in stratified treatment effect (treatment effect difference) comparing children with high versus low pathogen/biomarker status while controlling for baseline covariates. Results: We analyzed data from 1,522 children, who had median LAZ of -1.56. We found that myeloperoxidase (N+WSH treatment effect difference 0.0007 LAZ, WSH treatment effect difference 0.1032 LAZ, N treatment effect difference 0.0037 LAZ) and Campylobacter infection (N+WSH treatment effect difference 0.0011 LAZ, WSH difference 0.0119 LAZ, N difference 0.0255 LAZ) were associated with greater effect of all interventions on growth. In other words, children with high myeloperoxidase or Campylobacter infection experienced a greater impact of the interventions on growth. We found that a treatment rule that assigned the N+WSH (LAZ difference 0.23, 95% CI (0.05, 0.41)) and WSH (LAZ difference 0.17, 95% CI (0.04, 0.30)) interventions based on EED biomarkers and pathogens increased predicted child growth compared to the randomly allocated intervention. Conclusions: These findings indicate that EED biomarker and pathogen status, particularly Campylobacter and myeloperoxidase (a measure of gut inflammation), may be related to impact of N+WSH, WSH, and N interventions on child linear growth.
RESUMO
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum ß-lactamases (ESBLs) and carbapenemases in conferring resistance to ß-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Resistência Microbiana a MedicamentosRESUMO
The transmission of antimicrobial resistant bacteria in the urban environment is poorly understood. We utilized genomic sequencing and phylogenetics to characterize the transmission dynamics of antimicrobial resistant Escherichia coli (AMR-Ec) cultured from putative canine (caninep) and human feces present on urban sidewalks in San Francisco, California. We isolated a total of fifty-six AMR-Ec isolates from human (n = 20) and caninep (n = 36) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antimicrobial resistance (AMR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and caninesp from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Our results provide evidence for multiple sharing events of AMR-Ec between humans and caninesp. In particular, we found one instance of likely transmission from caninesp to humans as well as an additional local outbreak cluster consisting of one caninep and one human sample. Based on this analysis, it appears that non-human feces act as an important reservoir of clinically relevant AMR-Ec within the urban environment for this study population. This work showcases the utility of genomic epidemiology to reconstruct potential pathways by which antimicrobial resistance spreads.
Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Humanos , Cães , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Teorema de Bayes , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genéticaRESUMO
Recent research has highlighted the impacts of colonialism and racism in global health, yet few studies have presented concrete steps toward addressing the problems. We conducted a narrative review to identify published evidence that documented guiding frameworks for enhancing equity and inclusion in global health research and practice (GHRP). Based on this narrative review, we developed a questionnaire with a series of reflection questions related on commonly reported challenges related to diversity, inclusion, equity, and power imbalances. To reach consensus on a set of priority questions relevant to each theme, the questionnaire was sent to a sample of 18 global health experts virtually and two rounds of iterations were conducted. Results identified eight thematic areas and 19 reflective questions that can assist global health researchers and practitioners striving to implement socially just global health reforms. Key elements identified for improving GHRP include: (1) aiming to understand the historical context and power dynamics within the areas touched by the program; (2) promoting and mobilizing local stakeholders and leadership and ensuring measures for their participation in decision-making; (3) ensuring that knowledge products are co-produced and more equitably accessible; (4) establishing a more holistic feedback and accountability system to understand needed reforms based on local perspectives; and (5) applying systems thinking to addressing challenges and encouraging approaches that can be sustained long-term. GHRP professionals should reflect more deeply on how their goals align with those of their in-country collaborators. The consistent application of reflective processes has the potential to shift GHRP towards increased equity.
Assuntos
Saúde Global , Reforma dos Serviços de Saúde , Humanos , Reflexão Cognitiva , Pessoal de Saúde , ConhecimentoRESUMO
IMPORTANCE: The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum ß-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.
Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Criança , Humanos , Infecções por Escherichia coli/epidemiologia , Plasmídeos/genética , Equador , Escherichia coli/genética , Animais Domésticos/genética , beta-Lactamases/genética , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: The spread of antibiotic-resistant bacteria may be driven by human-animal-environment interactions, especially in regions with limited restrictions on antibiotic use, widespread food animal production, and free-roaming domestic animals. In this study, we aimed to identify risk factors related to commercial food animal production, small-scale or "backyard" food animal production, domestic animal ownership, and practices related to animal handling, waste disposal, and antibiotic use in Ecuadorian communities. METHODS AND FINDINGS: We conducted a repeated measures study from 2018 to 2021 in 7 semirural parishes of Quito, Ecuador to identify determinants of third-generation cephalosporin-resistant E. coli (3GCR-EC) and extended-spectrum beta-lactamase E. coli (ESBL-EC) in children. We collected 1,699 fecal samples from 600 children and 1,871 domestic animal fecal samples from 376 of the same households at up to 5 time points per household over the 3-year study period. We used multivariable log-binomial regression models to estimate relative risks (RR) of 3GCR-EC and ESBL-EC carriage, adjusting for child sex and age, caregiver education, household wealth, and recent child antibiotic use. Risk factors for 3GCR-EC included living within 5 km of more than 5 commercial food animal operations (RR: 1.26; 95% confidence interval (CI): 1.10, 1.45; p-value: 0.001), household pig ownership (RR: 1.23; 95% CI: 1.02, 1.48; p-value: 0.030) and child pet contact (RR: 1.23; 95% CI: 1.09, 1.39; p-value: 0.001). Risk factors for ESBL-EC were dog ownership (RR: 1.35; 95% CI: 1.00, 1.83; p-value: 0.053), child pet contact (RR: 1.54; 95% CI: 1.10, 2.16; p-value: 0.012), and placing animal feces on household land/crops (RR: 1.63; 95% CI: 1.09, 2.46; p-value: 0.019). The primary limitations of this study are the use of proxy and self-reported exposure measures and the use of a single beta-lactamase drug (ceftazidime with clavulanic acid) in combination disk diffusion tests for ESBL confirmation, potentially underestimating phenotypic ESBL production among cephalosporin-resistant E. coli isolates. To improve ESBL determination, it is recommended to use 2 combination disk diffusion tests (ceftazidime with clavulanic acid and cefotaxime with clavulanic acid) for ESBL confirmatory testing. Future studies should also characterize transmission pathways by assessing antibiotic resistance in commercial food animals and environmental reservoirs. CONCLUSIONS: In this study, we observed an increase in enteric colonization of antibiotic-resistant bacteria among children with exposures to domestic animals and their waste in the household environment and children living in areas with a higher density of commercial food animal production operations.
Assuntos
Ceftazidima , Escherichia coli , Animais , Criança , Cães , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , beta-Lactamases/metabolismo , Cefalosporinas , Ácido Clavulânico , Equador/epidemiologia , Fatores de Risco , Suínos , Masculino , FemininoRESUMO
The coronavirus 2019 (COVID-19) pandemic has had significant impacts on health systems, population dynamics, public health awareness, and antibiotic stewardship, which could affect antibiotic resistant bacteria (ARB) emergence and transmission. In this study, we aimed to compare knowledge, attitudes, and practices (KAP) of antibiotic use and ARB carriage in Ecuadorian communities before versus after the COVID-19 pandemic began. We leveraged data collected for a repeated measures observational study of third-generation cephalosporin-resistant E. coli (3GCR-EC) carriage among children in semi-rural communities in Quito, Ecuador between July 2018 and September 2021. We included 241 households that participated in surveys and child stool sample collection in 2019, before the pandemic, and in 2021, after the pandemic began. We estimated adjusted Prevalence Ratios (aPR) and 95% Confidence Intervals (CI) using logistic and Poisson regression models. Child antibiotic use in the last 3 months declined from 17% pre-pandemic to 5% in 2021 (aPR: 0.30; 95% CI 0.15, 0.61) and 3GCR-EC carriage among children declined from 40 to 23% (aPR: 0.48; 95% CI 0.32, 0.73). Multi-drug resistance declined from 86 to 70% (aPR: 0.32; 95% CI 0.13; 0.79), the average number of antibiotic resistance genes (ARGs) per 3GCR-EC isolate declined from 9.9 to 7.8 (aPR of 0.79; 95% CI 0.65, 0.96), and the diversity of ARGs was lower in 2021. In the context of Ecuador, where COVID-19 prevention and control measures were strictly enforced after its major cities experienced some of the world's the highest mortality rates from SARS-CoV-2 infections, antibiotic use and ARB carriage declined in semi-rural communities of Quito from 2019 to 2021.
Assuntos
COVID-19 , Escherichia coli , Criança , Humanos , Equador/epidemiologia , Pandemias , Antagonistas de Receptores de Angiotensina , População Rural , COVID-19/epidemiologia , Inibidores da Enzima Conversora de Angiotensina , SARS-CoV-2/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêuticoRESUMO
The role of canines in transmitting antibiotic resistant bacteria to humans in the urban environment is poorly understood. To elucidate this role, we utilized genomic sequencing and phylogenetics to characterize the burden and transmission dynamics of antibiotic resistant Escherichia coli (ABR-Ec) cultured from canine and human feces present on urban sidewalks in San Francisco, California. We collected a total of fifty-nine ABR-Ec from human (n=12) and canine (n=47) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antibiotic resistance (ABR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and canines from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Overall, we found human and canine samples to carry similar amounts and profiles of ABR genes. Our results provide evidence for multiple transmission events of ABR-Ec between humans and canines. In particular, we found one instance of likely transmission from canines to humans as well as an additional local outbreak cluster consisting of one canine and one human sample. Based on this analysis, it appears that canine feces act as an important reservoir of clinically relevant ABR-Ec within the urban environment. Our findings support that public health measures should continue to emphasize proper canine feces disposal practices, access to public toilets and sidewalk and street cleaning. Importance: Antibiotic resistance in E. coli is a growing public health concern with global attributable deaths projected to reach millions annually. Current research has focused heavily on clinical routes of antibiotic resistance transmission to design interventions while the role of alternative reservoirs such as domesticated animals remain less well understood. Our results suggest canines are part of the transmission network that disseminates high-risk multidrug resistance in E. coli within the urban San Francisco community. As such, this study highlights the need to consider canines, and potentially domesticated animals more broadly, when designing interventions to reduce the prevalence of antibiotic resistance in the community. Additionally, it showcases the utility of genomic epidemiology to reconstruct the pathways by which antimicrobial resistance spreads.
RESUMO
BACKGROUND: Antimicrobial resistant infections continue to be a leading global public health crisis. Mobile genetic elements, such as plasmids, have been shown to play a major role in the dissemination of antimicrobial resistance (AMR) genes. Despite its ongoing threat to human health, surveillance of AMR in the United States is often limited to phenotypic resistance. Genomic analyses are important to better understand the underlying resistance mechanisms, assess risk, and implement appropriate prevention strategies. This study aimed to investigate the extent of plasmid mediated antimicrobial resistance that can be inferred from short read sequences of carbapenem resistant E. coli (CR-Ec) in Alameda County, California. E. coli isolates from healthcare locations in Alameda County were sequenced using an Illumina MiSeq and assembled with Unicycler. Genomes were categorized according to predefined multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) schemes. Resistance genes were identified and corresponding contigs were predicted to be plasmid-borne or chromosome-borne using two bioinformatic tools (MOB-suite and mlplasmids). RESULTS: Among 82 of CR-Ec identified between 2017 and 2019, twenty-five sequence types (STs) were detected. ST131 was the most prominent (n = 17) followed closely by ST405 (n = 12). blaCTX-M were the most common ESBL genes and just over half (18/30) of these genes were predicted to be plasmid-borne by both MOB-suite and mlplasmids. Three genetically related groups of E. coli isolates were identified with cgMLST. One of the groups contained an isolate with a chromosome-borne blaCTX-M-15 gene and an isolate with a plasmid-borne blaCTX-M-15 gene. CONCLUSIONS: This study provides insights into the dominant clonal groups driving carbapenem resistant E. coli infections in Alameda County, CA, USA clinical sites and highlights the relevance of whole-genome sequencing in routine local genomic surveillance. The finding of multi-drug resistant plasmids harboring high-risk resistance genes is of concern as it indicates a risk of dissemination to previously susceptible clonal groups, potentially complicating clinical and public health intervention.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Carbapenêmicos/farmacologia , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , Plasmídeos/genética , Infecções por Escherichia coli/epidemiologia , beta-Lactamases/genética , Testes de Sensibilidade MicrobianaRESUMO
Antimicrobials are widely used worldwide in food animal production for controlling and preventing disease and for improving feed conversion efficiency and growth promotion. Inappropriate use of antimicrobials in animal agriculture has the potential to promote antimicrobial resistance, which represents a threat to human, animal, and environmental health. State and municipal policies in the United States have recently been implemented to improve antimicrobial use and reporting in this sector. This study analyzed the implementation of two state-level policies (California (CA) and Maryland (MD)) and a city-level policy in San Francisco (SF), California that aimed to reduce the use of antimicrobials in food-animals and increase transparency of antimicrobial use. A qualitative analysis was based on in-depth interviews with key informants (KIs) (n = 19) who had direct experience implementing or working in the context of these sub-national policies. Interviews were recorded and transcriptions were analyzed independently by two researchers using a three-stage, grounded theory coding procedure. This study identified four major findings, including 1) vague language on antimicrobial use within policies reduces policy effectiveness; 2) the lack of reporting by producers challenges the ability to evaluate the impact of the policies on actual use; 3) diverse stakeholders need to be involved in order to develop a more effective policy; and 4) funding should be linked to the policy to provide for reporting and data analysis. This analysis provides insights on the successes and failures of existing policies and serves to inform future sub-national policies aiming to improve the judicious use of antimicrobials in food-animals.
Assuntos
Anti-Infecciosos , Animais , Estados Unidos , Humanos , Desmame , Anti-Infecciosos/uso terapêutico , Políticas , Agricultura , MarylandRESUMO
The prevalence of carbapenem-resistant Enterobacterales (CRE) has been increasing since the year 2000 and is considered a serious public health threat according to the Centers for Disease Control and Prevention. Limited studies have genotyped Carbapenem-resistant Escherichia coli using whole genome sequencing to characterize the most common lineages and resistance and virulence genes. The aim of this study was to characterize sequence data from carbapenem-resistant E. coli isolates (n = 82) collected longitudinally by the Alameda County Public Health Laboratory (ACPHL) between 2017 and 2019. E. coli genomes were screened for antibiotic resistance genes (ARGs) and extraintestinal pathogenic E. coli virulence factor genes (VFGs). The carbapenem-resistant E. coli lineages were diverse, with 24 distinct sequence types (STs) represented, including clinically important STs: ST131, ST69, ST95, and ST73. All Ambler classes of Carbapenemases were present, with NDM-5 being most the frequently detected. Nearly all isolates (90%) contained genes encoding resistance to third-generation cephalosporins; blaCTX-M genes were most common. The number of virulence genes present within pandemic STs was significantly higher than the number in non-pandemic lineages (p = 0.035). Virulence genes fimA (92%), trat (71%), kpsM (54%), and iutA (46%) were the most prevalent within the isolates. Considering the public health risk associated with CRE, these data enhance our understanding of the diversity of clinically important E. coli that are circulating in Alameda County, California.
RESUMO
OBJECTIVES: The paediatric gut microbiota is a reservoir of antimicrobial resistance genes. Environmental factors such as a child's exposure to faecal contamination and antimicrobial resistance genes of animal origin likely shape the resistome of infants and children. This study measured how different levels of exposure to domestic or food animals affect the structure of the intestinal resistome in children between 1 and 7 years of age. METHODS: One hundred nineteen faecal samples from 39 children were analysed according to the level of exposure to domestic or food animals and categorized into three risk groups. Using high-throughput sequencing with an Illumina NovaSeq 6000 SP platform, we performed faecal resistome analyses using the ResFinder database. Additionally, ResistoXplorer was used to characterize the resistomes of children differentially exposed to domestic animals. RESULTS: Our data indicated that specific antimicrobial resistance genes such as those that confer resistance to MATFPR (macrolide, aminoglycoside, tetracycline, fluoroquinolone, phenicol, and rifamycin) and tetracyclines were statistically less abundant in the group of children without exposure to animals (group 2), compared with the groups exposed to domestic and food animals (groups 1 and 3). However, the overall resistome structure among the children was not affected by the different levels of exposure to animals. CONCLUSIONS: This study suggests that animal exposure is a risk factor for young children acquiring specific antimicrobial resistance genes from domestic animals or animal production areas. However, the overall resistome structure was not affected.