Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 234, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992584

RESUMO

BACKGROUND: The growing abundance of in vitro omics data, coupled with the necessity to reduce animal testing in the safety assessment of chemical compounds and even eliminate it in the evaluation of cosmetics, highlights the need for adequate computational methodologies. Data from omics technologies allow the exploration of a wide range of biological processes, therefore providing a better understanding of mechanisms of action (MoA) related to chemical exposure in biological systems. However, the analysis of these large datasets remains difficult due to the complexity of modulations spanning multiple biological processes. RESULTS: To address this, we propose a strategy to reduce information overload by computing, based on transcriptomics data, a comprehensive metabolic sub-network reflecting the metabolic impact of a chemical. The proposed strategy integrates transcriptomic data to a genome scale metabolic network through enumeration of condition-specific metabolic models hence translating transcriptomics data into reaction activity probabilities. Based on these results, a graph algorithm is applied to retrieve user readable sub-networks reflecting the possible metabolic MoA (mMoA) of chemicals. This strategy has been implemented as a three-step workflow. The first step consists in building cell condition-specific models reflecting the metabolic impact of each exposure condition while taking into account the diversity of possible optimal solutions with a partial enumeration algorithm. In a second step, we address the challenge of analyzing thousands of enumerated condition-specific networks by computing differentially activated reactions (DARs) between the two sets of enumerated possible condition-specific models. Finally, in the third step, DARs are grouped into clusters of functionally interconnected metabolic reactions, representing possible mMoA, using the distance-based clustering and subnetwork extraction method. The first part of the workflow was exemplified on eight molecules selected for their known human hepatotoxic outcomes associated with specific MoAs well described in the literature and for which we retrieved primary human hepatocytes transcriptomic data in Open TG-GATEs. Then, we further applied this strategy to more precisely model and visualize associated mMoA for two of these eight molecules (amiodarone and valproic acid). The approach proved to go beyond gene-based analysis by identifying mMoA when few genes are significantly differentially expressed (2 differentially expressed genes (DEGs) for amiodarone), bringing additional information from the network topology, or when very large number of genes were differentially expressed (5709 DEGs for valproic acid). In both cases, the results of our strategy well fitted evidence from the literature regarding known MoA. Beyond these confirmations, the workflow highlighted potential other unexplored mMoA. CONCLUSION: The proposed strategy allows toxicology experts to decipher which part of cellular metabolism is expected to be affected by the exposition to a given chemical. The approach originality resides in the combination of different metabolic modelling approaches (constraint based and graph modelling). The application to two model molecules shows the strong potential of the approach for interpretation and visual mining of complex omics in vitro data. The presented strategy is freely available as a python module ( https://pypi.org/project/manamodeller/ ) and jupyter notebooks ( https://github.com/LouisonF/MANA ).


Assuntos
Algoritmos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Biologia Computacional/métodos , Transcriptoma/genética , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos
2.
Nucleic Acids Res ; 49(20): 11728-11745, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718776

RESUMO

Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.


Assuntos
Reparo do DNA por Junção de Extremidades , Autoantígeno Ku/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
3.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922713

RESUMO

High-Z metallic nanoparticles (NPs) are new players in the therapeutic arsenal against cancer, especially radioresistant cells. Indeed, the presence of these NPs inside malignant cells is believed to enhance the effect of ionizing radiation by locally increasing the dose deposition. In this context, the potential of platinum nanoparticles (PtNPs) as radiosensitizers was investigated in two breast cancer cell lines, T47D and MDA-MB-231, showing a different radiation sensitivity. PtNPs were internalized in the two cell lines and localized in lysosomes and multivesicular bodies. Analyses of cell responses in terms of clonogenicity, survival, mortality, cell-cycle distribution, oxidative stress, and DNA double-strand breaks did not reveal any significant enhancement effect when cells were pre-exposed to PtNPs before being irradiated, as compared to radiation alone. This result is different from that reported in a previous study performed, under the same conditions, on cervical cancer HeLa cells. This shows that the efficacy of radio-enhancement is strongly cell-type-dependent. Simulation of the early stage ionization processes, taking into account the irradiation characteristics and realistic physical parameters in the biological sample, indicated that PtNPs could weakly increase the dose deposition (by 3%) in the immediate vicinity of the nanoparticles. Some features that are potentially responsible for the biological effect could not be taken into account in the simulation. Thus, chemical and biological effects could explain this discrepancy. For instance, we showed that, in these breast cancer cell lines, PtNPs exhibited ambivalent redox properties, with an antioxidant potential which could counteract the radio-enhancement effect. This work shows that the efficacy of PtNPs for enhancing radiation effects is strongly cell-dependent and that no effect is observed in the case of the breast cancer cell lines T47D and MDA-MB-231. Thus, more extensive experiments using other relevant biological models are needed in order to evaluate such combined strategies, since several clinical trials have already demonstrated the success of combining nanoagents with radiotherapy in the treatment of a range of tumor types.


Assuntos
Neoplasias da Mama/radioterapia , Simulação por Computador , Nanopartículas Metálicas/administração & dosagem , Platina/química , Radiação Ionizante , Radiossensibilizantes/administração & dosagem , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Nanopartículas Metálicas/química , Estresse Oxidativo , Radiossensibilizantes/química , Células Tumorais Cultivadas
4.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023866

RESUMO

Among nanomaterials (NMs), titanium dioxide (TiO2) is one of the most manufactured NMs and can be found in many consumers' products such as skin care products, textiles and food (as E171 additive). Moreover, due to its most attractive property, a photoactivation upon non-ionizing UVA radiation, TiO2 NMs is widely used as a decontaminating agent. Uncontrolled contaminations by TiO2 NMs during their production (professional exposure) or by using products (consumer exposure) are rather frequent. So far, TiO2 NMs cytotoxicity is still a matter of controversy depending on biological models, types of TiO2 NMs, suspension preparation and biological endpoints. TiO2 NMs photoactivation has been widely described for UV light radiation exposure, it could lead to reactive oxygen species production, known to be both cyto- and genotoxic on human cells. After higher photon energy exposition, such as X-rays used for radiotherapy and for medical imaging, TiO2 NMs photoactivation still occurs. Importantly, the question of its hazard in the case of body contamination of persons receiving radiotherapy was never addressed, knowing that healthy tissues surrounding the tumor are indeed exposed. The present work focuses on the analysis of human normal bronchiolar cell response after co-exposition TiO2 NMs (with different coatings) and ionizing radiation. Our results show a clear synergistic effect, in terms of cell viability, cell death and oxidative stress, between TiO2 NMS and radiation.


Assuntos
Bronquíolos/citologia , Radioterapia/efeitos adversos , Titânio/toxicidade , Bronquíolos/efeitos dos fármacos , Bronquíolos/metabolismo , Bronquíolos/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-27273980

RESUMO

With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM-cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose- and time-dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label-free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance-based monitoring, Multiplex analysis of secreted products, and genotoxicity methods-namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Animais , Linhagem Celular , Técnicas Citológicas , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Camundongos
6.
Oncotarget ; 6(29): 27980-8000, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26337656

RESUMO

Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells.


Assuntos
Antígenos Nucleares/metabolismo , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/genética , Western Blotting , Linhagem Celular Tumoral , Ensaio Cometa , Reparo do DNA , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Autoantígeno Ku , Espectrometria de Massas , Fosforilação , Isoformas de Proteínas/genética , RNA Interferente Pequeno , Transfecção
7.
Biomaterials ; 61: 290-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26010122

RESUMO

Hydrogenated nanodiamonds (H-NDs) exhibit a negative electron affinity that confers a high reactivity with oxygen species and a positive charge in aqueous solutions. It allows electron emission from H-NDs following irradiation by photons and in consequence may enhance the effects of radiation on cancer cells. By using three human radioresistant cancer cell lines, we showed a potentialization of cytotoxicity after a co-exposure to H-NDs and irradiation; an event occurring through the induction of DNA damage and reactive oxygen species. This occurred together with a decrease in cell impedance, the activation of G1/S, an unlocking of G2 cell cycle check-points and early low cell death rate. At later stage of exposure, persistent increases in heterochromatinization, large γ-H2AX foci and ß-galactosidase activity were detected providing evidence of cells' entrance into senescence. Similar potentialization was observed with neocarzinostatin (NCS), a radiomimetic drug. This original finding underlines a wide clinical potential of H-NDs to intensify radiation effects on radio-resistant cancer cells.


Assuntos
Sobrevivência Celular/efeitos da radiação , Hidrogênio/química , Nanodiamantes/administração & dosagem , Neoplasias Experimentais/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Teste de Materiais , Nanodiamantes/química , Nanodiamantes/ultraestrutura , Neoplasias Experimentais/patologia , Radiossensibilizantes/administração & dosagem , Resultado do Tratamento
8.
PLoS One ; 10(4): e0123297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875304

RESUMO

Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects are not necessarily associated.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Poliestirenos/farmacologia , Aminação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Glutationa/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Oxazinas , Tamanho da Partícula , Poliestirenos/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Xantenos
9.
J Mater Chem B ; 3(42): 8279-8292, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262883

RESUMO

The high porosity and versatile composition of the benchmarked mesoporous metal (Fe, Al, Cr) trimesate metal-organic frameworks (MIL-100(Fe, Al, Cr)) make them very promising solids in different strategic industrial and societal domains (separation, catalysis, biomedicine, etc.). In particular, MIL-100(Fe) nanoparticles (NPs) have been recently revealed to be one of the most promising and innovative next generation tools enabling multidrug delivery to overcome cancer resistance. Here, we analyzed the in vitro toxicity of the potential drug nanocarrier MIL-100(Fe) NPs and the effect of the constitutive cation by comparing its cytotoxicity with that one of its Cr and Al analogue NPs. Lung (A549 and Calu-3) and hepatic (HepG2 and Hep3B) cell lines were selected considering pulmonary, ingestion or intravenous exposure modes. First, the complete physicochemical characterization (structural, chemical and colloidal stability) of the MIL-100(Fe, Al, Cr) NPs was performed in the cell culture media. Then, their cytotoxicity was evaluated in the four selected cell lines using a combination of methods from cell impedance, cell survival/death and ROS generation to DNA damage for measuring genotoxicity. Thus, MIL-100(Fe, Al, Cr) NPs did not induce in vitro cell toxicity, even at high doses in the p53 wild type cell lines (A549 and calu-3 (lung) and HepG2 (liver)). The only toxic effect of MIL100-Fe was observed in the hepatocarcinoma cell line Hep3B, which is stress sensitive because it does not express TP53, the guardian of the genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA