Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 609: 113974, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010205

RESUMO

Antibody-based therapeutics targeting membrane proteins have evolved as a major modality for the treatment of cancer, inflammation and autoimmune diseases. There are numerous challenges, ranging from desired epitope expression to reliable binding/functional assays which are associated with developing antibodies for this target class. Specifically, having a robust methodology for characterizing antibody interaction with a membrane protein target is essential for providing guidance on dosing, potency and thus expected efficacy. Fluorescence-activated cell sorting (FACS) has been commonly used to characterize antibodies binding to membrane protein targets. FACS provides information about the antibody-receptor complex (antibody bound to cells) and the apparent equilibrium dissociation constant (KD') is elucidated by fitting the antibody-receptor binding isotherm as a function of total antibody concentration to a nonlinear regression model. Conversely, Kinetic Exclusion Assay (KinExA) has been used to measure solution-based equilibrium dissociation constant (KD) of antibodies. Here, KD is determined by measuring the free antibody concentration at equilibrium in a series of solutions in which the antibody is at constant concentration and the receptor (either in the membrane or the cell) is titrated. We measured the binding affinity of the anti-CD20 antibody, Rituximab, using both FACS and KinExA. There was ~25-fold difference in the binding affinity measured by these two techniques. We have explored this discrepancy through additional experiments around the mathematical framework involved in the analysis of these two different binding assays. Finally, our study concluded that KinExA enables accurate measurement of the KD for strong protein-protein interactions (sub-nanomolar values) compared to FACS.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD20/imunologia , Membrana Celular/química , Citometria de Fluxo/métodos , Proteínas de Membrana/imunologia , Anticorpos Monoclonais/química , Reações Antígeno-Anticorpo , Fluoresceínas/química , Humanos , Cinética , Rituximab/imunologia , Ácidos Sulfônicos/química
2.
Anal Biochem ; 556: 70-77, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29936096

RESUMO

Despite the significant role integral membrane proteins (IMPs) play in the drug discovery process, it remains extremely challenging to express, purify, and in vitro stabilize them for detailed biophysical analyses. Cell-free transcription-translation systems have emerged as a promising alternative for producing complex proteins, but they are still not a viable option for expressing IMPs due to improper post-translational folding of these proteins. We have studied key factors influencing in vitro folding of cell-free-expressed IMPs, particularly oligomeric proteins (i.e., ion channels). Using a chimeric ion channel, KcsA-Kv1.3 (K-K), as a model IMP, we have investigated several physiochemical determinants including artificial bilayer environments (i.e., lipid, detergent) for K-K in vitro stabilization. We observed that fusion of a 'superfolder' green fluorescent protein (sfGFP) to K-K as a protein expression reporter not only improves the protein yield, but surprisingly facilitates the K-K tetramer formation, probably by enhancing the solubility of monomeric K-K. Additionally, anionic lipids (i.e., DMPG) were found to be essential for the correct folding of cell-free-expressed monomeric K-K into tetramer, underscoring the importance of lipid-protein interaction in maintaining structural-functional integrity of ion channels. We further developed methods to integrate cell-free-expressed IMPs directly onto a biosensor chip. We employed a solid-supported lipid bilayer onto the surface plasmon resonance (SPR) chip to insert nascent K-K in a membrane. In a different approach, an anti-GFP-functionalized surface was used to capture in situ expressed K-K via its sfGFP tag. Interestingly, only the K-K-functionalized capture surface prepared by the latter strategy was able to interact with K-K's small binding partners. This generalizable approach can be further extended to other membrane proteins for developing direct binding assays involving small ligands.


Assuntos
Técnicas Biossensoriais/métodos , Canal de Potássio Kv1.3 , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas , Biossíntese de Proteínas , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Canal de Potássio Kv1.3/sangue , Canal de Potássio Kv1.3/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA