Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Bacteriol ; : e0029124, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315781

RESUMO

Chromosome segregation in bacteria is a critical process ensuring that each daughter cell receives an accurate copy of the genetic material during cell division. Active segregation factors, such as the ParABS system or SMC complexes, are usually essential for this process, but they are surprisingly dispensable in Streptococcus pneumoniae. Rather, chromosome segregation in S. pneumoniae relies on the protein Regulator of Chromosome Segregation (RocS), although the molecular mechanisms involved remain elusive. By combining genetics, in vivo imaging, and biochemical approaches, we dissected the molecular features of RocS involved in chromosome segregation. We investigated the respective functions of the three RocS domains, specifically the C-terminal amphipathic helix (AH), the N-terminal DNA-binding domain (DBD), and the coiled-coil domain (CCD) separating the AH and the DBD. Notably, we found that a single AH is not sufficient for membrane binding and that RocS requires prior oligomerization to interact with the membrane. We further demonstrated that this self-interaction was driven by the N-terminal part of the CCD. On the other hand, we revealed that the C-terminal part of the CCD corresponds to a domain of unknown function (DUF 536) and is defined by three conserved glutamines, which play a crucial role in RocS-mediated chromosome segregation. Finally, we showed that the DBD is phosphorylated by the unique serine-threonine kinase of S. pneumoniae StkP and that mimicking this phosphorylation abrogated RocS binding to DNA. Overall, this study offers new insights into chromosome segregation in Streptococci and paves the way for a deeper understanding of RocS-like proteins in other bacteria.IMPORTANCEBacteria have evolved a variety of mechanisms to properly segregate their genetic material during cell division. In this study, we performed a molecular dissection of the chromosome partitioning protein Regulator of Chromosome Segregation (RocS), a pillar element of chromosome segregation in S. pneumoniae that is also generally conserved in the Streptococcaceae family. Our systematic investigation sheds light on the molecular features required for successful pneumococcal chromosome segregation and the regulation of RocS by phosphorylation. In addition, our study also revealed that RocS shares functional domains with the Par protein, involved in an atypical plasmid segregation system. Therefore, we expect that our findings may serve to extend our understanding of RocS and RocS-like proteins while broadening the repertoire of partitioning systems used in bacteria.

2.
mBio ; : e0131124, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287436

RESUMO

Bacterial shape and division rely on the dynamics of cell wall assembly, which involves regulated synthesis and cleavage of the peptidoglycan. In ovococci, these processes are coordinated within an annular mid-cell region with nanometric dimensions. More precisely, the cross-wall synthesized by the divisome is split to generate a lateral wall, whose expansion is insured by the insertion of the so-called peripheral peptidoglycan by the elongasome. Septum cleavage and peripheral peptidoglycan synthesis are, thus, crucial remodeling events for ovococcal cell division and elongation. The structural DivIVA protein has long been known as a major regulator of these processes, but its mode of action remains unknown. Here, we integrate click chemistry-based peptidoglycan labeling, direct stochastic optical reconstruction microscopy, and in silico modeling, as well as epifluorescence and stimulated emission depletion microscopy to investigate the role of DivIVA in Streptococcus pneumoniae cell morphogenesis. Our work reveals two distinct phases of peptidoglycan remodeling during the cell cycle that are differentially controlled by DivIVA. In particular, we show that DivIVA ensures homogeneous septum cleavage and peripheral peptidoglycan synthesis around the division site and their maintenance throughout the cell cycle. Our data additionally suggest that DivIVA impacts the contribution of the elongasome and class A penicillin-binding proteins to cell elongation. We also report the position of DivIVA on either side of the septum, consistent with its known affinity for negatively curved membranes. Finally, we take the opportunity provided by these new observations to propose hypotheses for the mechanism of action of this key morphogenetic protein.IMPORTANCEThis study sheds light on fundamental processes governing bacterial growth and division, using integrated click chemistry, advanced microscopy, and computational modeling approaches. It addresses cell wall synthesis mechanisms in the opportunistic human pathogen Streptococcus pneumoniae, responsible for a range of illnesses (otitis, pneumonia, meningitis, septicemia) and for one million deaths every year worldwide. This bacterium belongs to the morphological group of ovococci, which includes many streptococcal and enterococcal pathogens. In this study, we have dissected the function of DivIVA, which is a structural protein involved in cell division, morphogenesis, and chromosome partitioning in Gram-positive bacteria. This work unveils the role of DivIVA in the orchestration of cell division and elongation along the pneumococcal cell cycle. It not only enhances our understanding of how ovoid bacteria proliferate but also offers the opportunity to consider how DivIVA might serve as a scaffold and sensor for particular membrane regions, thereby participating in various cell cycle processes.

3.
mBio ; 15(6): e0115724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757970

RESUMO

Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in Staphylococcus aureus. We establish that there is a synthetic lethal relationship between CozE and UgtP, the enzyme synthesizing the LTA glycolipid anchor Glc2DAG. By contrast, in cells lacking LtaA, the flippase of Glc2DAG, the essentiality of CozE proteins was alleviated, suggesting that the function of CozE proteins is linked to the synthesis and flipping of the glycolipid anchor. CozE proteins were indeed found to modulate the flipping activity of LtaA in vitro. Furthermore, CozEb was shown to control LTA polymer length and stability. Together, these findings establish CozE proteins as novel players in membrane homeostasis and LTA biosynthesis in S. aureus.IMPORTANCELipoteichoic acids are major constituents of the cell wall of Gram-positive bacteria. These anionic polymers are important virulence factors and modulators of antibiotic susceptibility in the important pathogen Staphylococcus aureus. They are also critical for maintaining cell integrity and facilitating proper cell division. In this work, we discover that a family of membrane proteins named CozE is involved in the biosynthesis of lipoteichoic acids (LTAs) in S. aureus. CozE proteins have previously been shown to affect bacterial cell division, but we here show that these proteins affect LTA length and stability, as well as the flipping of glycolipids between membrane leaflets. This new mechanism of LTA control may thus have implications for the virulence and antibiotic susceptibility of S. aureus.


Assuntos
Proteínas de Bactérias , Lipopolissacarídeos , Proteínas de Membrana , Staphylococcus aureus , Ácidos Teicoicos , Ácidos Teicoicos/biossíntese , Ácidos Teicoicos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Parede Celular/metabolismo , Membrana Celular/metabolismo
4.
iScience ; 27(4): 109505, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577105

RESUMO

Antibiotics inhibiting the fatty acid synthesis pathway (FASII) of the major pathogen Staphylococcus aureus reach their enzyme targets, but bacteria continue growth by using environmental fatty acids (eFAs) to produce phospholipids. We assessed the consequences and effectors of FASII-antibiotic (anti-FASII) adaptation. Anti-FASII induced lasting expression changes without genomic rearrangements. Several identified regulators affected the timing of adaptation outgrowth. Adaptation resulted in decreased expression of major virulence factors. Conversely, stress responses were globally increased and adapted bacteria were more resistant to peroxide killing. Importantly, pre-exposure to peroxide led to faster anti-FASII-adaptation by stimulating eFA incorporation. This adaptation differs from reports of peroxide-stimulated antibiotic efflux, which leads to tolerance. In vivo, anti-FASII-adapted S. aureus killed the insect host more slowly but continued multiplying. We conclude that staphylococcal adaptation to FASII antibiotics involves reprogramming, which decreases virulence and increases stress resistance. Peroxide, produced by the host to combat infection, favors anti-FASII adaptation.

5.
Microbiol Spectr ; 12(2): e0363823, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214521

RESUMO

Drug-resistant bacteria are a serious threat to human health as antibiotics are gradually losing their clinical efficacy. Comprehending the mechanism of action of antimicrobials and their resistance mechanisms plays a key role in developing new agents to fight antimicrobial resistance. The lipopeptide daptomycin is an antibiotic that selectively disrupts Gram-positive bacterial membranes, thereby showing slower resistance development than many classical drugs. Consequently, it is often used as a last resort antibiotic to preserve its use as one of the least potent antibiotics at our disposal. The mode of action of daptomycin has been debated but was recently found to involve the formation of a tripartite complex between undecaprenyl precursors of cell wall biosynthesis and the anionic phospholipid phosphatidylglycerol. BceAB-type ABC transporters are known to confer resistance to antimicrobial peptides that sequester some precursors of the peptidoglycan, such as the undecaprenyl pyrophosphate or lipid II. The expression of these transporters is upregulated by dedicated two-component regulatory systems in the presence of antimicrobial peptides that are recognized by the system. Here, we investigated whether daptomycin evades resistance mediated by the BceAB transporter from the bacterial pathogen Streptococcus pneumoniae. Although daptomycin can bind to the transporter, our data showed that the BceAB transporter does not mediate resistance to the drug and its expression is not induced in its presence. These findings show that the pioneering membrane-active daptomycin has the potential to escape the resistance mechanism mediated by BceAB-type transporters and confirm that the development of this class of compounds has promising clinical applications.IMPORTANCEAntibiotic resistance is rising in all parts of the world. New resistance mechanisms are emerging and dangerously spreading, threatening our ability to treat common infectious diseases. Daptomycin is an antimicrobial peptide that is one of the last antibiotics approved for clinical use. Understanding the resistance mechanisms toward last-resort antibiotics such as daptomycin is critical for the success of future antimicrobial therapies. BceAB-type ABC transporters confer resistance to antimicrobial peptides that target precursors of cell-wall synthesis. In this study, we showed that the BceAB transporter from the human pathogen Streptococcus pneumoniae does not confer resistance to daptomycin, suggesting that this drug and other calcium-dependent lipopeptide antibiotics have the potential to evade the action of this type of ABC transporters in other bacterial pathogens.


Assuntos
Daptomicina , Humanos , Daptomicina/farmacologia , Streptococcus pneumoniae/metabolismo , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Proteínas de Membrana Transportadoras , Lipopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/metabolismo , Peptídeos Antimicrobianos
6.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849218

RESUMO

Recycling of undecaprenol pyrophosphate is critical to regenerate the pool of undecaprenol monophosphate required for cell wall biosynthesis. Undecaprenol pyrophosphate is dephosphorylated by membrane-associated undecaprenyl pyrophosphate phosphatases such as UppP or type 2 Phosphatidic Acid Phosphatases (PAP2) and then transferred across the cytoplasmic membrane by Und-P flippases such as PopT (DUF368-containing protein) or UptA (a DedA family protein). While the deletion of uppP in S. pneumoniae has been reported to increase susceptibility to bacitracin and reduce infectivity in a murine infection model, the presence of PAP2 family proteins or Und-P flippases and their potential interplay with UppP in S. pneumoniae remained unknown. In this report, we identified two PAP2 family proteins and a DUF368-containing protein and investigated their roles together with that of UppP in cell growth, cell morphology and susceptibility to bacitracin in S. pneumoniae. Our results suggest that the undecaprenol monophosphate recycling pathway in S. pneumoniae could result from a functional redundancy between UppP, the PAP2-family protein Spr0434 and the DUF368-containing protein Spr0889.


Assuntos
Bacitracina , Streptococcus pneumoniae , Camundongos , Animais , Bacitracina/farmacologia , Streptococcus pneumoniae/genética , Difosfatos
7.
Nat Microbiol ; 8(10): 1896-1910, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37679597

RESUMO

The order Corynebacteriales includes major industrial and pathogenic Actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis. These bacteria have multi-layered cell walls composed of the mycolyl-arabinogalactan-peptidoglycan complex and a polar growth mode, thus requiring tight coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the coiled-coil protein Wag31. Here, using C. glutamicum, we report the discovery of two divisome members: a gephyrin-like repurposed molybdotransferase (Glp) and its membrane receptor (GlpR). Our results show how cell cycle progression requires interplay between Glp/GlpR, FtsZ and Wag31, showcasing a crucial crosstalk between the divisome and elongasome machineries that might be targeted for anti-mycobacterial drug discovery. Further, our work reveals that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis, similar to the gephyrin/GlyR system that mediates synaptic signalling in higher eukaryotes through network organization of membrane receptors and the microtubule cytoskeleton.


Assuntos
Eucariotos , Mycobacterium tuberculosis , Eucariotos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
8.
mBio ; 14(5): e0141123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37728370

RESUMO

IMPORTANCE: Penicillin-binding proteins (PBPs) are essential for proper bacterial cell division and morphogenesis. The genome of Streptococcus pneumoniae encodes for two class B PBPs (PBP2x and 2b), which are required for the assembly of the peptidoglycan framework and three class A PBPs (PBP1a, 1b and 2a), which remodel the peptidoglycan mesh during cell division. Therefore, their activities should be finely regulated in space and time to generate the pneumococcal ovoid cell shape. To date, two proteins, CozE and MacP, are known to regulate the function of PBP1a and PBP2a, respectively. In this study, we describe a novel regulator (CopD) that acts on both PBP1a and PBP2b. These findings provide valuable information for understanding bacterial cell division. Furthermore, knowing that ß-lactam antibiotic resistance often arises from PBP mutations, the characterization of such a regulator represents a promising opportunity to develop new strategies to resensitize resistant strains.


Assuntos
Peptidil Transferases , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Lactamas/metabolismo , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Peptidil Transferases/genética , Peptidil Transferases/metabolismo
9.
Cell Rep ; 42(7): 112756, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37418323

RESUMO

Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP. Structural and cellular studies notably reveal that the temporal and spatial localization of LytB is governed by the interaction between specific modules of LytB and the final PASTA domain of StkP. Our data collectively provide a comprehensive understanding of how LytB performs final separation of daughter cells and highlights the regulatory role of eukaryotic-like kinases on lytic machineries in the last step of cell division in streptococci.


Assuntos
Proteínas Serina-Treonina Quinases , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas Quinases/metabolismo , Hidrolases/metabolismo , Parede Celular/metabolismo
10.
Elife ; 122023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042660

RESUMO

Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.


Assuntos
Fenômenos Biológicos , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácidos Teicoicos/metabolismo , Sinais (Psicologia) , Lipopolissacarídeos/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(30): e2202527119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858428

RESUMO

Despite an extensive theoretical and numerical background, the translocation ratchet mechanism, which is fundamental for the transmembrane transport of biomolecules, has never been experimentally reproduced at the nanoscale. Only the Sec61 and bacterial type IV pilus pores were experimentally shown to exhibit a translocation ratchet mechanism. Here we designed a synthetic translocation ratchet and quantified its efficiency as a nanopump. We measured the translocation frequency of DNA molecules through nanoporous membranes and showed that polycations at the trans side accelerated the translocation in a ratchet-like fashion. We investigated the ratchet efficiency according to geometrical and kinetic parameters and observed the ratchet to be only dependent on the size of the DNA molecule with a power law [Formula: see text]. A threshold length of 3 kbp was observed, below which the ratchet did not operate. We interpreted this threshold in a DNA looping model, which quantitatively explained our results.


Assuntos
DNA , Nanoporos , Transporte Biológico , DNA/metabolismo , Fímbrias Bacterianas/metabolismo , Cinética
12.
Sci Rep ; 12(1): 13133, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907949

RESUMO

Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by D-alanine, a process known as D-alanylation. TA D-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after D-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA D-alanylation pathway.


Assuntos
Proteínas de Bactérias , Ácidos Teicoicos , Alanina/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Ácidos Teicoicos/metabolismo
13.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395062

RESUMO

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Assuntos
Peptídeos Antimicrobianos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Streptococcus pneumoniae , Peptídeos Antimicrobianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
14.
Trends Microbiol ; 30(6): 553-566, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34836791

RESUMO

It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fosforilação , Serina/metabolismo , Treonina/metabolismo
15.
Mol Microbiol ; 116(4): 1099-1112, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411374

RESUMO

Penicillin-binding proteins (PBPs) are crucial enzymes of peptidoglycan assembly and targets of ß-lactam antibiotics. However, little is known about their regulation. Recently, membrane proteins were shown to regulate the bifunctional transpeptidases/glycosyltransferases aPBPs in some bacteria. However, up to now, regulators of monofunctional transpeptidases bPBPs have yet to be revealed. Here, we propose that TseB could be such a PBP regulator. This membrane protein was previously found to suppress tetracycline sensitivity of a Bacillus subtilis strain deleted for ezrA, a gene encoding a regulator of septation ring formation. In this study, we show that TseB is required for B. subtilis normal cell shape, tseB mutant cells being shorter and wider than wild-type cells. We observed that TseB interacts with PBP2A, a monofunctional transpeptidase. While TseB is not required for PBP2A activity, stability, and localization, we show that the overproduction of PBP2A is deleterious in the absence of TseB. In addition, we showed that TseB is necessary not only for efficient cell wall elongation during exponential phase but also during spore outgrowth, as it was also observed for PBP2A. Altogether, our results suggest that TseB is a new member of the elongasome that regulates PBP2A function during cell elongation and spore germination.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Bacillus subtilis/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Farmacorresistência Bacteriana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação
16.
Curr Biol ; 31(13): 2844-2856.e6, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33989523

RESUMO

Dynamics of cell elongation and septation are key determinants of bacterial morphogenesis. These processes are intimately linked to peptidoglycan synthesis performed by macromolecular complexes called the elongasome and the divisome. In rod-shaped bacteria, cell elongation and septation, which are dissociated in time and space, have been well described. By contrast, in ovoid-shaped bacteria, the dynamics and relationships between these processes remain poorly understood because they are concomitant and confined to a nanometer-scale annular region at midcell. Here, we set up a metabolic peptidoglycan labeling approach using click chemistry to image peptidoglycan synthesis by single-molecule localization microscopy in the ovoid bacterium Streptococcus pneumoniae. Our nanoscale-resolution data reveal spatiotemporal features of peptidoglycan assembly and fate along the cell cycle and provide geometrical parameters that we used to construct a morphogenesis model of the ovoid cell. These analyses show that septal and peripheral peptidoglycan syntheses first occur within a single annular region that later separates in two concentric regions and that elongation persists after septation is completed. In addition, our data reveal that freshly synthesized peptidoglycan is remodeled all along the cell cycle. Altogether, our work provides evidence that septal peptidoglycan is synthesized from the beginning of the cell cycle and is constantly remodeled through cleavage and insertion of material at its periphery. The ovoid-cell morphogenesis would thus rely on the relative dynamics between peptidoglycan synthesis and cleavage rather than on the existence of two distinct successive phases of peripheral and septal synthesis.


Assuntos
Peptidoglicano , Streptococcus pneumoniae , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo Celular , Divisão Celular , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Streptococcus pneumoniae/metabolismo
17.
Mol Biol Evol ; 38(6): 2396-2412, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533884

RESUMO

The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.


Assuntos
Evolução Biológica , Divisão Celular/genética , Firmicutes/genética , Família Multigênica , Simulação por Computador , Sintenia
18.
Curr Opin Microbiol ; 60: 44-50, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588129

RESUMO

Years of intense research have shown that the assembly of peptidoglycan, the extracellular mesh-like polymer surrounding the bacterial cell, is incredibly complex. It requires a suite of reactions catalyzed by dynamic macromolecular protein complexes whose localization and activity should be finely regulated in space and time. In this review, we focus on the main developments reported over the last five years for the assembly of peptidoglycan in Firmicutes, a bacterial phylum that comprises monoderm bacteria and that encompasses well studied bacterial models with different cell shapes and lifestyles.


Assuntos
Firmicutes , Peptidoglicano , Bactérias/genética , Proteínas de Bactérias/genética , Parede Celular
19.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109762

RESUMO

Control of peptidoglycan assembly is critical to maintain bacterial cell size and morphology. Penicillin-binding proteins (PBPs) are crucial enzymes for the polymerization of the glycan strand and/or their cross-linking via peptide branches. Over the last few years, it has become clear that PBP activity and localization can be regulated by specific cognate regulators. The first regulator of PBP activity in Gram-positive bacteria was discovered in the human pathogen Streptococcus pneumoniae This regulator, named CozE, controls the activity of the bifunctional PBP1a to promote cell elongation and achieve a proper cell morphology. In this work, we studied a previously undescribed CozE homolog in the pneumococcus, which we named CozEb. This protein displays the same membrane organization as CozE but is much more widely conserved among Streptococcaceae genomes. Interestingly, cozEb deletion results in cells that are smaller than their wild-type counterparts, which is the opposite effect of cozE deletion. Furthermore, double deletion of cozE and cozEb results in poor viability and exacerbated cell shape defects. Coimmunoprecipitation further showed that CozEb is part of the same complex as CozE and PBP1a. However, although we confirmed that CozE is required for septal localization of PBP1a, the absence of CozEb has no effect on PBP1a localization. Nevertheless, we found that the overexpression of CozEb can compensate for the absence of CozE in all our assays. Altogether, our results show that the interplay between PBP1a and the cell size regulators CozE and CozEb is required for the maintenance of pneumococcal cell size and shape.IMPORTANCE Penicillin-binding proteins (PBPs), the proteins catalyzing the last steps of peptidoglycan assembly, are critical for bacteria to maintain cell size, shape, and integrity. PBPs are consequently attractive targets for antibiotics. Resistance to antibiotics in Streptococcus pneumoniae (the pneumococcus) are often associated with mutations in the PBPs. In this work, we describe a new protein, CozEb, controlling the cell size of pneumococcus. CozEb is a highly conserved integral membrane protein that works together with other proteins to regulate PBPs and peptidoglycan synthesis. Deciphering the intricate mechanisms by which the pneumococcus controls peptidoglycan assembly might allow the design of innovative anti-infective strategies, for example, by resensitizing resistant strains to PBP-targeting antibiotics.


Assuntos
Proteínas de Bactérias/genética , Homeostase , Proteínas de Membrana/genética , Proteínas de Ligação às Penicilinas/genética , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biologia Computacional , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Peptidoglicano/metabolismo , Fenótipo , Streptococcus pneumoniae/efeitos dos fármacos
20.
Sci Rep ; 10(1): 4051, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132631

RESUMO

MapZ localizes at midcell and acts as a molecular beacon for the positioning of the cell division machinery in the bacterium Streptococcus pneumoniae. MapZ contains a single transmembrane helix that separates the C-terminal extracellular domain from the N-terminal cytoplasmic domain. Only the structure and function of the extracellular domain is known. Here, we demonstrate that large parts of the cytoplasmic domain is intrinsically disordered and that there are two regions (from residues 45 to 68 and 79 to 95) with a tendency to fold into amphipathic helices. We further reveal that these regions interact with the surface of liposomes that mimic the Streptococcus pneumoniae cell membrane. The highly conserved and unfolded N-terminal region (from residues 17 to 43) specifically interacts with FtsZ independently of FtsZ polymerization state. Moreover, we show that MapZ phosphorylation at positions Thr67 and Thr68 does not impact the interaction with FtsZ or liposomes. Altogether, we propose a model in which the MapZ-mediated recruitment of FtsZ to mid-cell is modulated through competition of MapZ binding to the cell membrane. The molecular interplay between the components of this tripartite complex could represent a key step toward the complete assembly of the divisome.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/genética , Proteínas do Citoesqueleto/genética , Streptococcus pneumoniae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA