RESUMO
BACKGROUND: The consumption of 2 g/d plant sterols (PSs) reduces circulating LDL cholesterol by ≤10%. The degree of LDL cholesterol lowering was associated with specific apolipoprotein E [APOE, Reference SNP (rs)429358] and cholesterol 7α-hydroxylase (CYP7A1, rs3808607) genosets in previous post hoc analyses of randomized controlled trials. However, because post hoc analyses do not conform to the randomization model, there is a greater potential that the findings could be due to type I error, thus warranting validation through an a priori-designed intervention trial. OBJECTIVES: The GenePredict Plant Sterol study (GPS) was designed to validate associations of LDL cholesterol lowering with specific APOE and CYP7A1 genosets through a priori recruitment of individuals carrying prespecified genosets. METHODS: A 2-center, double-blind, placebo-controlled, randomized 2-period crossover dietary intervention with 2 g/d PS for 28 d with a minimum 28-d washout was undertaken from July 2017 to December 2019. A priori recruitment of individuals with slightly elevated LDL cholesterol was based on genosets of APOE isoforms and CYP7A1 rs3808607. Randomization was performed with stratification by sex and genoset. RESULTS: The recruitment target of 64 participants with prespecified genosets could not be reached, despite the screening of 477 individuals; 42 participants completed the intervention trial. Reductions in LDL cholesterol were similar across all 3 genosets (-0.298 ± 0.164, -0.357 ± 0.115, -0.293 ± 0.109 mmol/L; P = 0.0002 overall; P = 0.9126 for treatment × genoset), providing evidence that the shortfall in recruitment might not have stopped the trial from meeting the objective. CONCLUSIONS: APOE and CYP7A1 genotypes did not influence the efficacy of LDL cholesterol reductions upon dietary intervention with PSs. Findings of previous post hoc analyses could not be validated in a trial using a priori genotype-based recruitment. Obtaining adequate numbers of participants is challenging in trials using genoset-based recruitment, even for common variants.
Assuntos
Hipercolesterolemia , Fitosteróis , Apolipoproteínas E/genética , Colesterol 7-alfa-Hidroxilase/genética , LDL-Colesterol , HumanosRESUMO
BACKGROUND: Functional food ingredients and natural health products have been demonstrated to reduce disease risk and thereby help to lower health care costs across populations at risk for chronic or degenerative diseases. However, typically a wide range of interindividual variability exists in response across individuals to nutritional and natural health product bioactives, such as plant sterols (PS). This study aims to determine and utilize information on the associations between genosets and the degree of responsiveness to dietary PS intervention, with a long-term objective of developing genetic tests to predict responses to PS. METHODS: This clinical trial is designed as a double-blind, placebo controlled, randomized two-period crossover study. Sixty-four eligible participants with the specific a priori-determined single nucleotide polymorphisms (SNPs) associated with a responsiveness to PS will consume PS or a placebo treatment for two 4-week periods. The PS treatment consists of two daily single portions of margarine, each providing 1 g PS during the PS period (2.0 g/day of PS in total). The placebo will be an identical margarine containing no added PS. Low-density lipoprotein cholesterol (LDL-C) responsiveness to the controlled administration of PS will be investigated as the primary outcome, and the associations between interindividual genoset variabilities and response to PS consumption will be determined. DISCUSSION: This research will provide further insight into whether the associations between previously identified SNPs and the response of LDL-C to PS consumption can be used in a predictive manner. It will also provide insight into the complexities of undertaking a nutrigenetic trial with prospective recruitment based on genotype. TRIAL REGISTRATION: ClinicalTrials.gov: Identifier: NCT02765516. Registered on 6 May 2016.
Assuntos
LDL-Colesterol/sangue , LDL-Colesterol/genética , Fitosteróis/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Variação Genética , Humanos , Polimorfismo de Nucleotídeo Único , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
The hemibiotrophic fungal pathogen Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus (canola, oilseed rape) and causes significant loss of yield worldwide. While genetic resistance has been used to mitigate the disease by means of traditional breeding strategies, there is little knowledge about the genes that contribute to blackleg resistance. RNA sequencing and a streamlined bioinformatics pipeline identified unique genes and plant defense pathways specific to plant resistance in the B. napus-L. maculans LepR1-AvrLepR1 interaction over time. We complemented our temporal analyses by monitoring gene activity directly at the infection site using laser microdissection coupled to quantitative PCR. Finally, we characterized genes involved in plant resistance to blackleg in the Arabidopsis-L. maculans model pathosystem. Data reveal an accelerated activation of the plant transcriptome in resistant host cotyledons associated with transcripts coding for extracellular receptors and phytohormone signaling molecules. Functional characterization provides direct support for transcriptome data and positively identifies resistance regulators in the Brassicaceae. Spatial gradients of gene activity were identified in response to L. maculans proximal to the site of infection. This dataset provides unprecedented spatial and temporal resolution of the genes required for blackleg resistance and serves as a valuable resource for those interested in host-pathogen interactions.