Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Selenoproteínas , Tiorredoxina Dissulfeto Redutase , Adulto , Idoso , Animais , Humanos , Ratos , Insuficiência Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredução , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
3.
Eur J Med Chem ; 257: 115542, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290185

RESUMO

Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1ß release (35.5 ± 8.8% µM) at 10 µM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos , Lipopolissacarídeos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Teóricos
4.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048116

RESUMO

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Assuntos
Miócitos Cardíacos , Palmitatos , Palmitatos/toxicidade , Palmitatos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36834186

RESUMO

Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1ß and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1ß and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.


Assuntos
Miócitos Cardíacos , Quercetina , Humanos , Quercetina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Superóxido Dismutase/metabolismo
6.
Vascul Pharmacol ; 145: 107003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680059

RESUMO

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder that associates with nucleotide sequence variants in genes encoding sarcomere related proteins, and is recognized as the most common heritable cardiac diseases. Clinically, HCM can be extremely variable and this makes the diagnosis difficult until the development of serious or fatal events. Nevertheless, the main hallmark of HCM is represented by left ventricle hypertrophy that can be occasionally associated to cardiac arrhythmias, chest pain, diastolic dysfunction, obstruction of left ventricular outflow tract. The present review aims to focus on the complex interplay existing between the multifaceted non-genetic molecular mechanisms underlying HCM onset and progression, and the key pathophysiological role of abnormal coronary artery function. As the clinical course of HCM shows a mortality rate per year up to 6% the importance of innovative therapeutic strategies will be discussed, especially in regard to the use of potential endogenous coronary modulators to be enrolled as modifiers of HCM phenotype.


Assuntos
Cardiomiopatia Hipertrófica , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Coração , Humanos , Hipertrofia Ventricular Esquerda , Fenótipo , Sarcômeros/genética , Sarcômeros/metabolismo
7.
Antioxidants (Basel) ; 11(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326221

RESUMO

Oxidative stress and endoplasmic reticulum stress (ERS) are strictly involved in myocardial ischemia/reperfusion (MI/R). Selenoprotein T (SELENOT), a vital thioredoxin-like selenoprotein, is crucial for ER homeostasis and cardiomyocyte differentiation and protection, likely acting as a redox-sensing protein during MI/R. Here, we designed a small peptide (PSELT), encompassing the redox site of SELENOT, and investigated whether its pre-conditioning cardioprotective effect resulted from modulating ERS during I/R. The Langendorff rat heart model was employed for hemodynamic analysis, while mechanistic studies were performed in perfused hearts and H9c2 cardiomyoblasts. PSELT improved the post-ischemic contractile recovery, reducing infarct size and LDH release with and without the ERS inducer tunicamycin (TM). Mechanistically, I/R and TM upregulated SELENOT expression, which was further enhanced by PSELT. PSELT also prevented the expression of the ERS markers CHOP and ATF6, reduced cardiac lipid peroxidation and protein oxidation, and increased SOD and catalase activities. An inert PSELT (I-PSELT) lacking selenocysteine was ineffective. In H9c2 cells, H2O2 decreased cell viability and SELENOT expression, while PSELT rescued protein levels protecting against cell death. In SELENOT-deficient H9c2 cells, H2O2 exacerbated cell death, that was partially mitigated by PSELT. Microscopy analysis revealed that a fluorescent form of PSELT was internalized into cardiomyocytes with a perinuclear distribution. Conclusions: The cell-permeable PSELT is able to induce pharmacological preconditioning cardioprotection by mitigating ERS and oxidative stress, and by regulating endogenous SELENOT.

8.
Biomedicines ; 10(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35327322

RESUMO

Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).

9.
Int Immunopharmacol ; 94: 107487, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33636560

RESUMO

Global public health is threatened by new pathogens, antimicrobial resistant microorganisms and a rapid decline of conventional antimicrobials efficacy. Thus, numerous medical procedures become life-threating. Sepsis can lead to tissue damage such as myocardium inflammation, associated with reduction of contractility and diastolic dysfunction, which may cause death. In this perspective, growing interest and attention are paid on host defence peptides considered as new potential antimicrobials. In the present study, we investigated the physiological and biochemical properties of Cateslytin (Ctl), an endogenous antimicrobial chromogranin A-derived peptide, in H9c2 cardiomyocytes exposed to lipopolysaccharide (LPS) infection. We showed that both Ctl (L and D) enantiomers, but not their scrambled counterparts, significantly increased cardiomyocytes viability following LPS, even if L-Ctl was effective at lower concentration (1 nM) compared to D-Ctl (10 nM). L-Ctl mitigated LPS-induced LDH release and oxidative stress, as visible by a reduction of MDA and protein carbonyl groups content, and by an increase of SOD activity. Molecular docking simulations strongly suggested that L-Ctl modulates TLR4 through a direct binding to the partner protein MD-2. Molecular analyses indicated that the protection mediated by L-Ctl against LPS-evoked sepsis targeted the TLR4/ERK/JNK/p38-MAPK pathway, regulating NFkB p65, NFkB p52 and COX2 expression and repressing the mRNA expression levels of the LPS-induced proinflammatory factors IL-1ß, IL-6, TNF-α and NOS2. These findings indicate that Ctl could be considered as a possible candidate for the development of new antimicrobials strategies in the treatment of myocarditis. Interestingly, L-enantiomeric Ctl showed remarkable properties in strengthening the anti-inflammatory and anti-oxidant effects on cardiomyocytes.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Cromogranina A/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Lipopolissacarídeos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Receptor 4 Toll-Like/metabolismo
10.
Acta Physiol (Oxf) ; 231(4): e13570, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073482

RESUMO

AIM: Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS: Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS: On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION: These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.


Assuntos
Neuropilina-1 , Fragmentos de Peptídeos , Animais , Cromogranina A , Humanos , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Ratos
12.
Antioxidants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143213

RESUMO

The impaired ability to feed properly, evident in oncologic, elderly, and dysphagic patients, may result in malnutrition and sarcopenia. Increasing the consumption of dietary proteins by functional foods and enriching their composition by adding beneficial nutrients may represent an adjuvant therapy. We aimed to evaluate the safety and the positive effects of a standard diet (SD) supplemented with whey-derived protein puddings (WDPP), with appropriate rheological properties, and hemp seed oil (HSO), rich in polyphenols. Rats were assigned to SD, WDPP, WDPP plus hemp seed oil (HSOP), and HSO supplemented diets for eight weeks. "Anthropometric", metabolic, and biochemical variables, oxidative stress, tissue injury, liver histology, and cardiac susceptibility to ischemia/reperfusion were analyzed. All the supplementations did not induce significant changes in biochemical and metabolic variables, also in relation to glucose tolerance, and livers did not undergo morphological alteration and injury. An improvement of cardiac post-ischemic function in the Langendorff perfused heart model and a reduction of infarct size were observed in WDPP and HSOP groups, thanks to their antioxidant effects and the activation of Akt- and AMPK-dependent protective pathways. Data suggest that (i) functional foods enriched with WDPP and HSOP may be used to approach malnutrition and sarcopenia successfully under disabling conditions, also conferring cardioprotection, and that (ii) adequate rheological properties could positively impact dysphagia-related problems.

13.
FASEB J ; 33(6): 7734-7747, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973759

RESUMO

The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cromogranina A/metabolismo , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA