RESUMO
Reducing neuroinflammation, a key contributor to brain aging and neurodegenerative diseases, is a promising strategy for improving cognitive function in these settings. The FDA-approved nucleoside reverse transcriptase inhibitor 3TC (Lamivudine) has been reported to improve cognitive function in old wild-type mice and multiple mouse models of neurodegenerative disease, but its effects on the brain have not been comprehensively investigated. In the current study, we used transcriptomics to broadly characterize the effects of long-term supplementation with a human-equivalent therapeutic dose of 3TC on the hippocampal transcriptome in male and female rTg4510 mice (a commonly studied model of tauopathy-associated neurodegeneration). We found that tauopathy increased hippocampal transcriptomic signatures of neuroinflammation/immune activation, but 3TC treatment reversed some of these effects. We also found that 3TC mitigated tauopathy-associated activation of key transcription factors that contribute to neuroinflammation and immune activation, and these changes were related to improved recognition memory performance. Collectively, our findings suggest that 3TC exerts protective effects against tauopathy in the hippocampus by modulating inflammation and immune activation, and they may provide helpful insight for ongoing clinical efforts to determine if 3TC and/or related therapeutics hold promise for treating neurodegeneration.
Assuntos
Modelos Animais de Doenças , Hipocampo , Lamivudina , Inibidores da Transcriptase Reversa , Tauopatias , Transcriptoma , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Tauopatias/tratamento farmacológico , Tauopatias/genética , Camundongos , Masculino , Inibidores da Transcriptase Reversa/farmacologia , Feminino , Lamivudina/farmacologia , Lamivudina/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/genética , Camundongos Transgênicos , Inflamação/tratamento farmacológicoRESUMO
Aging is the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease. Major hallmarks of brain aging include neuroinflammation/immune activation and reduced neuronal health/function. These processes contribute to cognitive dysfunction (a key risk factor for Alzheimer's disease), but their upstream causes are incompletely understood. Age-related increases in transposable element (TE) transcripts might contribute to reduced cognitive function with brain aging, as the reverse transcriptase inhibitor 3TC reduces inflammation in peripheral tissues and TE transcripts have been linked with tau pathology in Alzheimer's disease. However, the effects of 3TC on cognitive function with aging have not been investigated. Here, in support of a role for TE transcripts in brain aging/cognitive decline, we show that 3TC: (a) improves cognitive function and reduces neuroinflammation in old wild-type mice; (b) preserves neuronal health with aging in mice and Caenorhabditis elegans; and (c) enhances cognitive function in a mouse model of tauopathy. We also provide insight on potential underlying mechanisms, as well as evidence of translational relevance for these observations by showing that TE transcripts accumulate with brain aging in humans, and that these age-related increases intersect with those observed in Alzheimer's disease. Collectively, our results suggest that TE transcript accumulation during aging may contribute to cognitive decline and neurodegeneration, and that targeting these events with reverse transcriptase inhibitors like 3TC could be a viable therapeutic strategy.