Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38862123

RESUMO

The SARS-CoV-2 (COVID-19) pandemic outbreak led to enormous social and economic repercussions worldwide, felt even to this date, making the design of new therapies to combat fast-spreading viruses an imperative task. In the face of this, diverse cutting-edge nanotechnologies have risen as promising tools to treat infectious diseases such as COVID-19, as well as challenging illnesses such as cancer and diabetes. Aside from these applications, nanoscale metal-organic frameworks (nanoMOFs) have attracted much attention as novel efficient drug delivery systems for diverse pathologies. However, their potential as anti-COVID-19 therapeutic agents has not been investigated. Herein, we propose a pioneering anti-COVID MOF approach by studying their potential as safe and intrinsically antiviral agents through screening various nanoMOF. The iron(III)-trimesate MIL-100 showed a noteworthy antiviral effect against SARS-CoV-2 at the micromolar range, ensuring a high biocompatibility profile (90% of viability) in a real infected human cellular scenario. This research effectively paves the way toward novel antiviral therapies based on nanoMOFs, not only against SARS-CoV-2 but also against other challenging infectious and/or pulmonary diseases.

2.
Sci Rep ; 14(1): 7882, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570568

RESUMO

Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal-organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L-1 to mg·L-1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Humanos , Adsorção , Poluentes Químicos da Água/análise , Águas Residuárias , Atenolol , Estruturas Metalorgânicas/química , Diclofenaco , Água , Preparações Farmacêuticas
3.
Small ; 20(6): e2305258, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797179

RESUMO

Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki-Miyaura cross-coupling C─C bond forming reactions is demonstrated.

4.
Chemistry ; 29(53): e202301725, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37402648

RESUMO

Functionalized triose-, furanose and chromane-derivatives were synthesized by the titled reactions. The sugar-assisted kinetic resolution/C-C bond-forming cascade processes generate a functionalized sugar derivative with a quaternary stereocenter in a highly enantioselective fashion (up to >99 % ee) by using a simple combination of metal and chiral amine co-catalysts. Notably, the interplay between the chiral sugar substrate and the chiral amino acid derivative allowed for the construction of a functionalized sugar product with high enantioselectivity (up to 99 %) also when using a combination of racemic amine catalyst (0 % ee) and metal catalyst.

5.
Angew Chem Int Ed Engl ; 62(29): e202218679, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37102303

RESUMO

The solution chemistry of aluminum is highly complex and various polyoxocations are known. Here we report on the facile synthesis of a cationic Al24 cluster that forms porous salts of composition [Al24 (OH)56 (CH3 COO)12 ]X4 , denoted CAU-55-X, with X=Cl- , Br- , I- , HSO4 - . Three-dimensional electron diffraction was employed to determine the crystal structures. Various robust and mild synthesis routes for the chloride salt [Al24 (OH)56 (CH3 COO)12 ]Cl4 in water were established resulting in high yields (>95 %, 215 g per batch) within minutes. Specific surface areas and H2 O capacities with maximum values of up to 930 m2 g-1 and 430 mg g-1 are observed. The particle size of CAU-55-X can be tuned between 140 nm and 1250 nm, permitting its synthesis as stable dispersions or as highly crystalline powders. The positive surface charge of the particles, allow fast and effective adsorption of anionic dye molecules and adsorption of poly- and perfluoroalkyl substances (PFAS).

6.
J Am Chem Soc ; 144(19): 8725-8733, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503249

RESUMO

A metal-organic framework (MOF) CTH-17 based on lanthanum(III) and the conformationally chiral linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene, cpb6-: [La2(cpb)]·1.5dmf was prepared by the solvothermal method in dimethylformamide (dmf) and characterized by variable-temperature X-ray powder diffraction (VTPXRD), variable-temperature X-ray single-crystal diffraction (SCXRD), and thermogravimetric analysis (TGA). CTH-17 is a rod-MOF with new topology och. It has high-temperature stability with Sohncke space groups P6122/P6522 at 90 K and P622 at 300 and 500 K, all phases characterized with SCXRD and at 293 K also with three-dimensional (3D) electron diffraction. VTPXRD indicates a third phase appearing after 620 K and stable up to 770 K. Gas sorption isotherms with N2 indicate a modest surface area of 231 m2 g-1 for CTH-17, roughly in agreement with the crystal structure. Carbon dioxide sorption reveals a gate-opening effect of CTH-17 where the structure opens up when the loading of CO2 reaches approximately ∼0.45 mmol g-1 or 1 molecule per unit cell. Based on the SCXRD data, this is interpreted as flexibility based on the concerted movements of the propeller-like hexatopic cpb linkers, the movement intramolecularly transmitted by the π-π stacking of the cpb linkers and helped by the fluidity of the LaO6 coordination sphere. This was corroborated by density functional theory (DFT) calculations yielding the chiral phase (P622) as the energy minimum and a completely racemic phase (P6/mmm), with symmetric cpb linkers representing a saddle point in a racemization process.

7.
Adv Mater ; 33(52): e2106627, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34632639

RESUMO

A new porous titanium(IV) squarate metal-organic framework (MOF), denoted as IEF-11, having a never reported titanium secondary building unit, is successfully synthesized and fully characterized. IEF-11 not only exhibits a permanent porosity but also an outstanding chemical stability. Further, as a consequence of combining the photoactive Ti(IV) and the electroactive squarate, IEF-11 presents relevant optoelectronic properties, applied here to the photocatalytic overall water splitting reaction. Remarkably, IEF-11 as a photocatalyst is able to produce record H2 amounts for MOF-based materials under simulated sunlight (up to 672 µmol gcatalyst in 22 h) without any activity loss during at least 10 d.

8.
Inorg Chem ; 60(12): 8861-8869, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34105945

RESUMO

Following the concept of isoreticular chemistry, we carried out a systematic study on Ga-containing metal-organic frameworks (MOFs) using six V-shaped linker molecules of differing sizes, geometries, and additional functional groups. The linkers included three isophthalic acid derivatives (m-H2BDC-R, R = CH3, OCH3, NHCOCH3), thiophene-2,5-dicarboxylic acid (H2TDC), and two 4,4'-sulfonyldibenzoic acid derivatives (H2SDBA, DPSTA). The crystal structures of seven compounds were elucidated by a combination of model building, single-crystal X-ray diffraction (SCXRD), three-dimensional electron diffraction (3D ED), and Rietveld refinements against powder X-ray diffraction (PXRD) data. Four new Ga-MOFs that are isoreticular with their aluminum counterparts, i.e. Ga-CAU-10-R (Ga(OH)(m-BDC-R); R = OCH3, NHCOCH3), Ga-CAU-11 (Ga(OH)(SDBA)), and Ga-CAU-11-COOH (Ga(OH)(H2DPSTC)), were obtained. For the first time large single crystals of a MOF crystallizing in the CAU-10 structure type could be isolated, i.e. Ga-CAU-10-OCH3, which permitted a detailed structural characterization. In addition, the use of 5-methylisophthalic acid and thiophene-2,5-dicarboxylic acid resulted in two new Ga-MOFs denoted Ga-CAU-49 and Ga-CAU-51, respectively, which are not isostructural with any known Al-MOF. The crystal structure of Ga-CAU-49 ([Ga4(m-HBDC-CH3)2(m-BDC-CH3)3(OH)4(H2O)]) contains an unprecedented rod-shaped inorganic building unit (IBU) of the formula ∞1{Ga16(OH)18O60}, composed of corner-sharing GaO5 and GaO6 polyhedra. In Ga-CAU-51 ([Ga(OH)(C5H2O2S)]) chains of alternating cis and trans corner-sharing GaO6 polyhedra form the IBU. A detailed characterization of the title compounds was carried out, including nitrogen gas and water vapor sorption measurements. Ga-CAU-11 was the only compound exhibiting porosity toward nitrogen with a type I isotherm, a specific surface area of aS,BET = 210 m2/g, and a micropore volume of Vmic = 0.09 cm3/g. The new MOF Ga-CAU-51 exhibits exceptional water sorption properties with a reversible S-shaped isotherm and a high uptake around p/p0 = 0.38 of mads = 370 mg/g.

9.
J Am Chem Soc ; 143(17): 6333-6338, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900747

RESUMO

Catalysts for photochemical reactions underlie many foundations in our lives, from natural light harvesting to modern energy storage and conversion, including processes such as water photolysis by TiO2. Recently, metal-organic frameworks (MOFs) have attracted large interest within the chemical research community, as their structural variety and tunability yield advantages in designing photocatalysts to address energy and environmental challenges. Here, we report a series of novel multivariate metal-organic frameworks (MTV-MOFs), denoted as MTV-MIL-100. They are constructed by linking aromatic carboxylates and AB2OX3 bimetallic clusters, which have ordered atomic arrangements. Synthesized through a solvent-assisted approach, these ordered and multivariate metal clusters offer an opportunity to enhance and fine-tune the electronic structures of the crystalline materials. Moreover, mass transport is improved by taking advantage of the high porosity of the MOF structure. Combining these key advantages, MTV-MIL-100(Ti,Co) exhibits a high photoactivity with a turnover frequency of 113.7 molH2 gcat.-1 min-1, a quantum efficiency of 4.25%, and a space time yield of 4.96 × 10-5 in the photocatalytic hydrolysis of ammonia borane. Bridging the fields of perovskites and MOFs, this work provides a novel platform for the design of highly active photocatalysts.

10.
J Am Chem Soc ; 142(39): 16795-16804, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32894014

RESUMO

The first bioinspired microporous metal-organic framework (MOF) synthesized using ellagic acid, a common natural antioxidant and polyphenol building unit, is presented. Bi2O(H2O)2(C14H2O8)·nH2O (SU-101) was inspired by bismuth phenolate metallodrugs, and could be synthesized entirely from nonhazardous or edible reagents under ambient aqueous conditions, enabling simple scale-up. Reagent-grade and affordable dietary supplement-grade ellagic acid was sourced from tree bark and pomegranate hulls, respectively. Biocompatibility and colloidal stability were confirmed by in vitro assays. The material exhibits remarkable chemical stability for a bioinspired MOF (pH = 2-14, hydrothermal conditions, heated organic solvents, biological media, SO2 and H2S), attributed to the strongly chelating phenolates. A total H2S uptake of 15.95 mmol g-1 was recorded, representing one of the highest H2S capacities for a MOF, where polysulfides are formed inside the pores of the material. Phenolic phytochemicals remain largely unexplored as linkers for MOF synthesis, opening new avenues to design stable, eco-friendly, scalable, and low-cost MOFs for diverse applications, including drug delivery.


Assuntos
Materiais Biocompatíveis/síntese química , Bismuto/química , Ácido Elágico/química , Estruturas Metalorgânicas/síntese química , Materiais Biocompatíveis/química , Teoria da Densidade Funcional , Estruturas Metalorgânicas/química , Estrutura Molecular
11.
Inorg Chem ; 59(14): 9969-9978, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32628458

RESUMO

The metallocene-based linker molecule 1,1'-ferrocenedicarboxylic acid (H2FcDC) was used to synthesize four different polymorphs of composition [In(OH)(FeC12H8O4)]. Using conventional solvent-based synthesis methods and varying the synthetic parameters such as metal source, reaction temperature, and solvent, two different MOFs and one 1D-coordination polymer denoted as CAU-43 (1), In-MIL-53-FcDC_a (2), and In-FcDC (3) were obtained. Furthermore, thermal treatment of CAU-43 (1) at 190 °C under vacuum yielded a new polymorph of 2, In-MIL-53-FcDC_b (4). Both MOFs 2 and 4 crystallize in a MIL-53 type structure, but in different space groups C2/m for 2 and P1̅ for 4. The structures of the four title compounds were determined by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), or a combination of three-dimensional electron diffraction measurements (3D ED) and PXRD. N2 sorption experiments of 1, 2, and 4 showed specific surface areas of 355 m2 g-1, 110 m2 g-1, and 140 m2 g-1, respectively. Furthermore, the electronic properties of the title compounds were characterized via Mössbauer and EPR spectroscopy. All Mössbauer spectra showed the characteristic doublet, proving the persistence of the ferrocene moiety. In the cases of 1, 3, and 4, appreciable impurities of ferrocenium ions could be detected by electron paramagnetic resonance spectroscopy. Cyclovoltammetric experiments were performed to demonstrate the accessible redox activity of the linker molecule of the title compounds. A redox process of FcDC2- with oxidation (between 0.86 and 0.97 V) and reduction wave (between 0.69 and 0.80 V) was observed.

12.
Inorg Chem ; 59(13): 8995-9004, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32551552

RESUMO

A new scandium metal-organic framework (Sc-MOF) with the composition of [Sc(OH)(OBA)], denoted as Sc-CAU-21, was prepared under solvothermal reaction conditions using 4,4'-oxidibenzoic acid (H2OBA) as the ligand. Single-crystal structure determination revealed the presence of the new inorganic building unit (IBU) {Sc8(µ-OH)8(O2C)16}. It is composed of cis-connected ScO6 polyhedra forming an eight-membered ring through bridging µ-OH groups. The connection of the IBUs leads to a 3D framework, containing 1D pores with a diameter between 4.2 and 5.6 Å. Pore access is limited by the size of the IBU, and in contrast to the isoreticular aluminum compound Al-CAU-21 [Al(OH)(OBA)], which is nonporous toward nitrogen at 77 K, Sc-CAU-21 exhibits a specific surface area of 610 m2 g-1. The title compound is thermally stable in air up to 350 °C and can be employed as a host for photoluminescent ions. Sc-CAU-21 exhibits a ligand-based blue emission, and (co)substituting Sc3+ ions with Ln3+ ions (Eu3+, Tb3+, and Dy3+) allows the tuning of the emitting color of the phosphor from red to green. Single-phase white-light emission with CIE color coordinates close to the ideal for white-light emission was also achieved. The luminescence property was utilized in combination with powder X-ray diffraction to study in situ the crystallization process of Sc-CAU-21:Tb and Sc-CAU-21:Eu. Both studies indicate a two-step crystallization process, with a crystalline intermediate, prior to the formation of Sc-CAU-21:Ln.

13.
Angew Chem Int Ed Engl ; 59(26): 10391-10395, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32091647

RESUMO

A silver-triggered heterogeneous Pd-catalyzed oxidative carbonylation has been developed. This heterogeneous process exhibits high efficiency and good recyclability, and was utilized for the one-pot construction of polycyclic compounds with multiple chiral centers. AgOTf was used to remove chloride ions in the heterogeneous catalyst Pd-AmP-CNC, thereby generating highly active PdII , which results in high efficiency of the heterogeneous catalytic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA