Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Microorganisms ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110312

RESUMO

The geographical origin of a major present-day phylogenetic group (A branch WNA; A.Br.WNA) of American Bacillus anthracis is controversial. One hypothesis postulated that the anthrax pathogen reached North America via a then-existing land bridge from northeastern Asia thousands of years ago. A competing hypothesis suggested that B. anthracis was introduced to America a couple of hundred years ago, related to European colonization. The latter view is strongly supported by genomic analysis of a group of French B. anthracis isolates that are phylogenetically closely related to the North American strains of the A branch A.Br.WNA clade. In addition, three West African strains also belong to this relationship group. Recently, we have added a Spanish strain to these close relatives of the WNA lineage of American B. anthracis. Nevertheless, the diversity of Spanish B. anthracis remains largely unexplored, and phylogenetic links to European or American relatives are not well resolved. Here, we genome sequenced and characterized 29 new B. anthracis isolates (yielding 18 unique genotypes) from outbreaks in west central and central Spain in 2021. Applying comparative chromosomal analysis, we placed the chromosomes of these isolates within the established phylogeny of the A.Br.008/009 (A.Br.TEA) canonical SNP group. From this analysis, a new sub-clade, named A.Br.11/ESPc, emerged that constitutes a sister group of American A.Br.WNA.

2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232797

RESUMO

The emetic type of foodborne disease caused by Bacillus cereus is produced by the small peptide toxin cereulide. The genetic locus encoding the Ces nonribosomal peptide synthetase (CesNRPS) multienzyme machinery is located on a 270 kb megaplasmid, designated pCER270, which shares its backbone with the Bacillus anthracis toxin plasmid pXO1. Although the ces genes are plasmid-borne, the chromosomally encoded pleiotropic transcriptional factors CodY and AbrB are key players in the control of ces transcription. Since these proteins only repress cereulide synthesis during earlier growth phases, other factors must be involved in the strict control of ces expression and its embedment in the bacterial life cycle. In silico genome analysis revealed that pCER270 carries a putative ArsR/SmtB family transcription factor showing high homology to PagR from B. anthracis. As PagR plays a crucial role in the regulation of the protective antigen gene pagA, which forms part of anthrax toxin, we used a gene-inactivation approach, combined with electrophoretic mobility shift assays and a bacterial two-hybrid system for dissecting the role of the PagR homologue PagRBc in the regulation of cereulide synthesis. Our results highlight that the plasmid-encoded transcriptional regulator PagRBc plays an important role in the complex and multilayered process of cereulide synthesis.


Assuntos
Bacillus anthracis , Depsipeptídeos , Bacillus anthracis/metabolismo , Bacillus cereus , Depsipeptídeos/genética , Depsipeptídeos/metabolismo , Eméticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Clin Microbiol ; 60(3): e0229121, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35195442

RESUMO

The zoonotic disease anthrax, caused by the endospore-forming bacterium Bacillus anthracis, is very rare in Germany. In the state of Bavaria, the last case occurred in July of 2009, resulting in four dead cows. In August of 2021, the disease reemerged after heavy rains, killing one gestating cow. Notably, both outbreaks affected the same pasture, suggesting a close epidemiological connection. B. anthracis could be grown from blood culture, and the presence of both virulence plasmids (pXO1 and pXO2) was confirmed by PCR. Also, recently developed diagnostic tools enabled rapid detection of B. anthracis cells and nucleic acids directly in clinical samples. The complete genome of the strain isolated from blood, designated BF-5, was DNA sequenced and phylogenetically grouped within the B.Br.CNEVA clade, which is typical for European B. anthracis strains. The genome was almost identical to BF-1, the isolate from 2009, separated only by three single nucleotide polymorphisms (SNPs) on the chromosome, one on plasmid pXO2 and three indel regions. Further, B. anthracis DNA was detected by PCR from soil samples taken from spots in the pasture where the cow had fallen. New tools based on phage receptor-binding proteins enabled the microscopic detection and isolation of B. anthracis directly from soil samples. These environmental isolates were genotyped and found to be identical to BF-5 in terms of SNPs. Therefore, it seems that the BF-5 genotype is currently the prevalent one at the affected premises. The area contaminated by the cadaver was subsequently disinfected with formaldehyde.


Assuntos
Antraz , Bacillus anthracis , Animais , Antraz/epidemiologia , Antraz/veterinária , Bacillus anthracis/genética , Bovinos , Feminino , Humanos , Plasmídeos/genética , Solo , Virulência
4.
mSystems ; 7(1): e0136121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35076271

RESUMO

Analysis of 16S rRNA (rRNA) genes provides a central means of taxonomic classification of bacterial species. Based on presumed sequence identity among species of the Bacillus cereus sensu lato group, the 16S rRNA genes of B. anthracis have been considered unsuitable for diagnosis of the anthrax pathogen. With the recent identification of a single nucleotide polymorphism in some 16S rRNA gene copies, specific identification of B. anthracis becomes feasible. Here, we designed and evaluated a set of in situ, in vitro, and in silico assays to assess the unknown 16S state of B. anthracis from different perspectives. Using a combination of digital PCR, fluorescence in situ hybridization, long-read genome sequencing, and bioinformatics, we were able to detect and quantify a unique 16S rRNA gene allele of B. anthracis (16S-BA-allele). This allele was found in all available B. anthracis genomes and may facilitate differentiation of the pathogen from any close relative. Bioinformatics analysis of 959 B. anthracis SRA data sets inferred that abundances and genomic arrangements of the 16S-BA-allele and the entire rRNA operon copy numbers differ considerably between strains. Expression ratios of 16S-BA-alleles were proportional to the respective genomic allele copy numbers. The findings and experimental tools presented here provide detailed insights into the intra- and intergenomic diversity of 16S rRNA genes and may pave the way for improved identification of B. anthracis and other pathogens with diverse rRNA operons. IMPORTANCE For severe infectious diseases, precise pathogen detection is crucial for antibiotic therapy and patient survival. Identification of Bacillus anthracis, the causative agent of the zoonosis anthrax, can be challenging when querying specific nucleotide sequences such as in small subunit rRNA (16S rRNA) genes, which are commonly used for typing of bacteria. This study analyzed on a broad genomic scale a cryptic and hitherto underappreciated allelic variant of the bacterium's 16S rRNA genes and their transcripts using a set of in situ, in vitro, and in silico assays and found significant intra- and intergenomic heterogeneity in the distribution of the allele and overall rRNA operon copy numbers. This allelic variation was uniquely species specific, which enabled sensitive pathogen detection on both DNA and transcript levels. The methodology used here is likely also applicable to other pathogens that are otherwise difficult to discriminate from their less harmful relatives.


Assuntos
Antraz , Bacillus anthracis , Bacillus , Humanos , Antraz/diagnóstico , RNA Ribossômico 16S/genética , Genes de RNAr , Hibridização in Situ Fluorescente
5.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830105

RESUMO

The anthrax pathogen Bacillus anthracis poses a significant threat to human health. Identification of B. anthracis is challenging because of the bacterium's close genetic relationship to other Bacillus cereus group species. Thus, molecular detection is founded on species-specific PCR targeting single-copy genes. Here, we validated a previously recognized multi-copy target, a species-specific single nucleotide polymorphism (SNP) present in 2-5 copies in every B. anthracis genome analyzed. For this, a hydrolysis probe-based real-time PCR assay was developed and rigorously tested. The assay was specific as only B. anthracis DNA yielded positive results, was linear over 9 log10 units, and was sensitive with a limit of detection (LoD) of 2.9 copies/reaction. Though not exhibiting a lower LoD than established single-copy PCR targets (dhp61 or PL3), the higher copy number of the B. anthracis-specific 16S rRNA gene alleles afforded ≤2 unit lower threshold (Ct) values. To push the detection limit even further, the assay was adapted for reverse transcription PCR on 16S rRNA transcripts. This RT-PCR assay was also linear over 9 log10 units and was sensitive with an LoD of 6.3 copies/reaction. In a dilution series of experiments, the 16S RT-PCR assay achieved a thousand-fold higher sensitivity than the DNA-targeting assays. For molecular diagnostics, we recommend a real-time RT-PCR assay variant in which both DNA and RNA serve as templates (thus, no requirement for DNase treatment). This can at least provide results equaling the DNA-based implementation if no RNA is present but is superior even at the lowest residual rRNA concentrations.


Assuntos
Bacillus anthracis/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Polimorfismo Genético , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452328

RESUMO

Bacteriophage receptor binding proteins (RBPs) are employed by viruses to recognize specific surface structures on bacterial host cells. Recombinant RBPs have been utilized for detection of several pathogens, typically as fusions with reporter enzymes or fluorescent proteins. Identification of Bacillus anthracis, the etiological agent of anthrax, can be difficult because of the bacterium's close relationship with other species of the Bacillus cereussensu lato group. Here, we facilitated the identification of B. anthracis using two implementations of enzyme-linked phage receptor binding protein assays (ELPRA). We developed a single-tube centrifugation assay simplifying the rapid analysis of suspect colonies. A second assay enables identification of suspect colonies from mixed overgrown solid (agar) media derived from the complex matrix soil. Thus, these tests identified vegetative cells of B. anthracis with little processing time and may support or confirm pathogen detection by molecular methods such as polymerase chain reaction.


Assuntos
Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Proteínas de Bactérias/química , Técnicas Bacteriológicas/métodos , Receptores de Bacteriófagos/química , Medições Luminescentes/métodos , Fagos Bacilares/genética , Fagos Bacilares/fisiologia , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Bacillus anthracis/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/instrumentação , Receptores de Bacteriófagos/genética , Receptores de Bacteriófagos/metabolismo , Genes Reporter , Humanos , Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microbiologia do Solo , Proteína Vermelha Fluorescente
7.
Toxins (Basel) ; 13(2)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557428

RESUMO

The emetic toxin cereulide is a 1.2 kDa dodecadepsipeptide produced by the food pathogen Bacillus cereus. As cereulide poses a serious health risk to humans, sensitive and specific detection, as well as toxin purification and quantification, methods are of utmost importance. Recently, a stable isotope dilution assay tandem mass spectrometry (SIDA-MS/MS)-based method has been described, and an method for the quantitation of cereulide in foods was established by the International Organization for Standardization (ISO). However, although this SIDA-MS/MS method is highly accurate, the sophisticated high-end MS equipment required for such measurements limits the method's suitability for microbiological and molecular research. Thus, we aimed to develop a method for cereulide toxin detection and isolation using equipment commonly available in microbiological and biochemical research laboratories. Reproducible detection and relative quantification of cereulide was achieved, employing reversed phase chromatography (RPC). Chromatographic signals were cross validated by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). The specificity of the RPC method was tested using a test panel of strains that included non-emetic representatives of the B. cereus group, emetic B. cereus strains, and cereulide-deficient isogenic mutants. In summary, the new method represents a robust, economical, and easily accessible research tool that complements existing diagnostics for the detection and quantification of cereulide.


Assuntos
Bacillus cereus/metabolismo , Cromatografia de Fase Reversa , Depsipeptídeos/isolamento & purificação , Doenças Transmitidas por Alimentos/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Vômito/microbiologia , Bacillus cereus/genética , Humanos , Reprodutibilidade dos Testes
8.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067196

RESUMO

Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.


Assuntos
Evolução Biológica , Cobre/farmacologia , Escherichia coli/genética , Staphylococcus aureus Resistente à Meticilina/genética , Seleção Genética , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
9.
Metallomics ; 12(10): 1530-1541, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780051

RESUMO

Campylobacter jejuni is a leading cause of food-borne gastrointestinal disease in humans and uropathogenic Escherichia coli is a leading cause of urinary tract infections. Both human pathogens harbour a homologous iron uptake system (termed cjFetM-P19 in C. jejuni and ecFetM-FetP in E. coli). Although these systems are important for growth under iron limitation, the mechanisms by which these systems function during iron transport remain undefined. The copper ions bound to P19 and FetP, the homologous periplasmic proteins, are coordinated in an uncommon penta-dentate manner involving a Met-Glu-His3 motif and exhibit positional plasticity. Here we demonstrate the function of the Met and Glu residues in modulating copper binding and controlling copper positioning through site-directed variants, binding assays, and crystal structures. Growth of C. jejuni strains with these p19 variants is impaired under iron limited conditions as compared to the wild-type strain. Additionally, an acidic residue-rich secondary site is required for binding iron and function in vivo. Finally, western blot analyses demonstrate direct and specific interactions between periplasmic P19 and FetP with the large periplasmic domain of their respective inner membrane transporters cjFetM and ecFetM.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Ferro/metabolismo , Proteínas Periplásmicas/metabolismo , Escherichia coli Uropatogênica/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Transporte Biológico , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/química , Cobre/metabolismo , Cristalografia por Raios X , Infecções por Escherichia coli/microbiologia , Humanos , Modelos Moleculares , Proteínas Periplásmicas/química , Escherichia coli Uropatogênica/química
10.
Pathogens ; 9(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727041

RESUMO

The highly pathogenic bacterium Yersinia pestis is the causative agent of plague, a notorious infectious zoonotic disease. When transmitted from person to person as pneumonic plague via droplets, Y. pestis is highly contagious and in most cases is fatal if left untreated. Thus, when plague is suspected, rapid diagnosis is crucial, as a serious course of the infection is only averted by early antibiotic therapy. The bacterium is easy to cultivate, accessible and has a high potential for nefarious use such as bioterrorism. Highly specific, rapid and easy-to-use confirmatory diagnostic methods are required to reliably identify the pathogen independently from PCR-based methods or F1 antigen-based immunological detection. Yersinia pestis specific phages such as L-413C and ΦA1122 are already used for detection of Y. pestis in bacterial plaque or biosensor assays. Here, we made use of the host specificities conferred by phage receptor binding (or tail fiber/spike) proteins (RBP) for developing a specific, fast and simple fluorescence-microscopy-based detection method for Y. pestis. Genes of putative RBP of phages L-413C (gpH) and ΦA1122 (gp17) were fused with those of fluorescent proteins and recombinant receptor-reporter fusion proteins were produced heterologously in Escherichia coli. When first tested on attenuated Y. pestis strain EV76, RBP-reporters bound to the bacterial cell surface. This assay could be completed within a few minutes using live or formaldehyde-inactivated cells. Specificity tests using cultures of closely related Yersinia species and several inactivated fully virulent Y. pestis strains exhibited high specificities of the RBP-reporters against Y. pestis. The L-413C RBP proved to be especially specific, as it only detected Y. pestis at all temperatures tested, whereas the RBP of ΦA1122 also bound to Y. pseudotuberculosis strains at 37 °C (but not at 28, 20 or 6 °C). Finally, the Y. pestis-specific capsule, produced when grown at 37 °C, significantly reduced binding of phage ΦA1122 RBP, whereas the capsule only slightly diminished binding of L-413C RBP.

11.
Microorganisms ; 8(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575866

RESUMO

Bacillus anthracis, the etiological agent of anthrax disease, is typically diagnosed by immunological and molecular methods such as polymerase chain reaction (PCR). Alternatively, mass spectrometry techniques may aid in confirming the presence of the pathogen or its toxins. However, because of the close genetic relationship between B. anthracis and other members of the Bacillus cereus sensu lato group (such as Bacillus cereus or Bacillus thuringiensis) mis- or questionable identification occurs frequently. Also, bacteriophages such as phage gamma (which is highly specific for B. anthracis) have been in use for anthrax diagnostics for many decades. Here we employed host cell-specific receptor binding proteins (RBP) of (pro)-phages, also known as tail or head fibers, to develop a microscopy-based approach for the facile, rapid and unambiguous detection of B. anthracis cells. For this, the genes of (putative) RBP from Bacillus phages gamma, Wip1, AP50c and from lambdoid prophage 03 located on the chromosome of B. anthracis were selected. Respective phage genes were heterologously expressed in Escherichia coli and purified as fusions with fluorescent proteins. B. anthracis cells incubated with either of the reporter fusion proteins were successfully surface-labeled. Binding specificity was confirmed as RBP fusion proteins did not bind to most isolates of a panel of other B. cereus s.l. species or to more distantly related bacteria. Remarkably, RBP fusions detected encapsulated B. anthracis cells, thus RBP were able to penetrate the poly-γ-d-glutamate capsule of B. anthracis. From these results we anticipate this RBP-reporter assay may be useful for rapid confirmative identification of B. anthracis.

12.
Microorganisms ; 8(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443768

RESUMO

A variety of methods have been established in order to optimize the accessibility of DNA originating from Bacillus anthracis cells and endospores to facilitate highly sensitive molecular diagnostics. However, most endospore lysis techniques have not been evaluated in respect to their quantitative proficiencies. Here, we started by systematically assessing the efficiencies of 20 DNA extraction kits for vegetative B. anthracis cells. Of these, the Epicentre MasterPure kit gave the best DNA yields and quality suitable for further genomic analysis. Yet, none of the kits tested were able to extract reasonable quantities of DNA from cores of the endospores. Thus, we developed a mechanical endospore lysis protocol, facilitating the extraction of high-quality DNA. Transmission electron microscopy or the labelling of spores with the indicator dye propidium monoazide was utilized to assess lysis efficiency. Finally, the yield and quality of genomic spore DNA were quantified by PCR and they were found to be dependent on lysis matrix composition, instrumental parameters, and the method used for subsequent DNA purification. Our final standardized lysis and DNA extraction protocol allows for the quantitative detection of low levels (<50 CFU/mL) of B. anthracis endospores and it is suitable for direct quantification, even under resource-limited field conditions, where culturing is not an option.

13.
Microorganisms ; 8(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098212

RESUMO

The bacterium Bacillus anthracis is the causative agent of the zoonotic disease anthrax. While genomics of extant B. anthracis isolates established in-depth phylogenomic relationships, there is scarce information on the historic genomics of the pathogen. Here, we characterized the oldest documented B. anthracis specimen. The inactive 142-year-old material originated from a bovine diseased in Chemnitz (Germany) in 1878 and is contemporary with the seminal studies of Robert Koch on B. anthracis. A specifically developed isolation method yielded high-quality DNA from this specimen for genomic sequencing. The bacterial chromosome featuring 242 unique base-characters placed it into a major phylogenetic clade of B. anthracis (B.Branch CNEVA), which is typical for central Europe today. Our results support the notion that the CNEVA-clade represents part of the indigenous genetic lineage of B. anthracis in this part of Europe. This work emphasizes the value of historic specimens as precious resources for reconstructing the past phylogeny of the anthrax pathogen.

14.
Microorganisms ; 7(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842497

RESUMO

The largest phylogenetic lineage known to date of the anthrax pathogen Bacillus anthracis is the wide-spread, so-called Trans-Eurasian clade systematically categorized as the A.Br.008/009 group sharing two defining canonical single-nucleotide polymorphisms (canSNP). In this study, we genome-sequenced a collection of 35 B. anthracis strains of this clade, derived from human infections, animal outbreaks or soil, mostly from European countries isolated between 1936 and 2008. The new data were subjected to comparative chromosomal analysis, together with 75 B. anthracis genomes available in public databases, and the relative placements of these isolates were determined within the global phylogeny of the A.Br.008/009 canSNP group. From this analysis, we have detected 3754 chromosomal SNPs, allowing the assignation of the new chromosomal sequences to established sub-clades, to define new sub-clades, such as two new Spanish, one Bulgarian or one German group(s), or to introduce orphan lineages. SNP-based results were compared with that of a multilocus variable number of tandem repeat analysis (MLVA). This analysis indicated that MLVA typing might provide additional information in cases when genomics yields identical genotypes or shows only minor differences. Introducing the delayed mismatch amplification assay (DMAA) PCR-analysis, we developed a cost-effective method to interrogate for a set of ten phylogenetically informative SNPs within genomes of A.Br.008/009 canSNP clade strains of B. anthracis. By this approach, additional 32 strains could be assigned to five of ten defined clades.

15.
BMC Microbiol ; 18(1): 102, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176810

RESUMO

BACKGROUND: Anthrax, the zoonotic disease caused by the gram-positive bacterium Bacillus anthracis, is nowadays rare in northern parts of Europe including Finland and Scandinavia. Only two minor outbreaks of anthrax in 1988 and in 2004 and one sporadic infection in 2008 have been detected in animals in Finland since the 1970's. Here, we report on two Finnish B. anthracis strains that were isolated from spleen and liver of a diseased calf related to the outbreak in 1988 (strain HKI4363/88) and from a local scrotum and testicle infection of a bull in 2008 (strain BA2968). These infections occurred in two rural Finnish regions, i.e., Ostrobothnia in western Finland and Päijänne Tavastia in southern Finland, respectively. RESULTS: The isolates were genetically characterized by PCR-based methods such as multilocus variable number of tandem repeat analysis (MLVA) and whole genome-sequence analysis (WGS). Phylogenetic comparison of the two strains HKI4363/88 and BA2968 by chromosomal single nucleotide polymorphism (SNP) analysis grouped these organisms within their relatives of the minor canonical A-branch canSNP-group A.Br.003/004 (A.Br.V770) or canonical B-branch B.Br.001/002, respectively. Strain HKI4363/88 clustered relatively closely with other members of the A.Br.003/004 lineage from Europe, South Africa, and South America. In contrast, strain BA2968 clearly constituted a new sublineage within B.Br.001/002 with its closest relative being HYO01 from South Korea. CONCLUSIONS: Our results suggest that Finland harbors both unique (autochthonous) and more widely distributed, common clades of B. anthracis. We suspect that members of the common clades such as strains HKI4363/88 have been introduced only recently by anthropogenic activities involving importation of contaminated animal products. On the other hand, autochthonous strains such as isolate BA2968 probably have an older history of their introduction into Finland as evidenced by a high number of single nucleotide variant sites in their genomes.


Assuntos
Antraz/veterinária , Bacillus anthracis/isolamento & purificação , Doenças dos Bovinos/microbiologia , Filogenia , Animais , Antraz/microbiologia , Bacillus anthracis/classificação , Bacillus anthracis/genética , Bovinos , Finlândia , Genoma Bacteriano , Genótipo , Polimorfismo de Nucleotídeo Único
16.
Sci Rep ; 8(1): 11254, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050151

RESUMO

Anthrax is common as a zoonotic disease in the southern Caucasus area including parts of Turkey and Georgia. In this region, population genetics of the etiological agent Bacillus anthracis comprises, where known, the major canonical single nucleotide polymorphism (canSNP) groups A.Br.Aust94 and A.Br.008/009 of the pathogen's global phylogeny, respectively. Previously, isolates of B. anthracis from Turkey have been genotyped predominantly by multi locus variable number of tandem repeat analysis (MLVA) or canSNP typing. While whole genome sequencing is the future gold standard, it is currently still costly. For that reason we were interested in identifying novel SNPs which could assist in further distinguishing closely related isolates using low cost assay platforms. In this study we sequenced the genomes of seven B. anthracis strains collected from the Kars province of Eastern Anatolia in Turkey and discovered new SNPs which allowed us to assign these and other geographically related strains to three novel branches of the major A-branch canSNP-group (A.Br.) Aust94. These new branches were named Kafkas-Geo 1-3 and comprised isolates from the Kars region and the neighboring republic of Georgia suggesting a common ancestry. The novel SNPs identified in this study connect the population genetics of B. anthracis in the South Caucasus and Turkey and will likely assist efforts to map the spread of the pathogen across this region.


Assuntos
Antraz/microbiologia , Bacillus anthracis/classificação , Bacillus anthracis/isolamento & purificação , Genótipo , Técnicas de Genotipagem/métodos , Tipagem Molecular/métodos , Polimorfismo de Nucleotídeo Único , Bacillus anthracis/genética , Epidemiologia Molecular/métodos , Turquia
17.
J Clin Microbiol ; 56(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514939

RESUMO

Discrimination of highly pathogenic bacteria, such as Bacillus anthracis, from closely related species based on molecular biological methods is challenging. We applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to a collection of B. anthracis strains and close relatives in order to significantly improve the statistical confidence of identification results for this group of bacteria. Protein mass spectra of 189 verified and diverse Bacillus strains of the Bacillus cereus sensu lato group were generated using MALDI-TOF MS and subsequently analyzed with supervised and unsupervised statistical methods, such as shrinkage discriminant analysis (SDA) and principal-component analysis (PCA). We aimed at identifying specific biomarkers in the protein spectra of B. anthracis not present in closely related Bacillus species. We could identify 7, 10, 18, and 14 B. anthracis-specific biomarker candidates that were absent in B. cereus, B. mycoides, B. thuringiensis, and B. weihenstephanensis strains, respectively. Main spectra (MSP) of a defined collection of Bacillus strains were compiled using the Bruker Biotyper software and added to an in-house reference library. Reevaluation of this library with 15 hitherto untested strains of B. anthracis and B. cereus yielded improved score values. The B. anthracis strains were identified with score values between 2.33 and 2.55 using the in-house database, while the same strains were identified with scores between 1.94 and 2.37 using the commercial database, and no false-positive identifications occurred using the in-house database.


Assuntos
Bacillus anthracis/classificação , Bacillus cereus/classificação , Proteínas de Bactérias/análise , Técnicas de Tipagem Bacteriana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Bacillus/química , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus anthracis/química , Bacillus anthracis/isolamento & purificação , Bacillus cereus/química , Bacillus cereus/isolamento & purificação , Biomarcadores/análise , Análise por Conglomerados , Bases de Dados Factuais , Análise de Componente Principal
18.
Forensic Sci Int Genet ; 32: 1-6, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024922

RESUMO

Infections caused by endospore-forming bacteria have been associated with severe illness and death among persons who inject drugs. Analysis of the bacteria residing in heroin has thus been biased towards species that affect human health. Similarly, exploration of the bacterial diversity of seized street market heroin correlated with the skin microflora of recreational heroin users insofar as different Staphylococus spp. or typical environmental endospore formers including Bacillus cereus and other Bacilli outside the B. cereus sensu lato group as well as diverse Clostridia were identified. In this work 82 samples of non-street market ("wholesale") heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2009 and 2014 were analyzed for contaminating bacteria. Without contact with the end user and with only little contaminations introduced by final processing, adulteration and cutting this heroin likely harbors original microbiota from the drug's original source or trafficking route. We found this drug to be only sparsely populated with retrievable heterotrophic, aerobic bacteria. In total, 68 isolates were retrieved from 49 out of 82 samples analyzed (60% culture positive). All isolates were endospore-forming, Gram-positive Bacilli. Completely absent were non-endospore-formers or Gram-negatives. The three most predominant species were Bacillus clausii, Bacillus (para)licheniformis, and Terribacillus saccharophilus. Whole genome sequencing of these 68 isolates was performed using Illumina technology. Sequence data sets were assembled and annotated using an automated bioinformatics pipeline. Average nucleotide identity (ANI) values were calculated for all draft genomes and all close to identical genomes (ANI>99.5%) were compared to the forensic data of the seized drug, showing positive correlations that strongly warrant further research on this subject.


Assuntos
Bacillales/genética , Contaminação de Medicamentos , Heroína/química , Entorpecentes/química , Sequenciamento Completo do Genoma , Bases de Dados de Ácidos Nucleicos , Genética Forense , Genoma Bacteriano , Humanos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Genome Announc ; 5(38)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935751

RESUMO

We report the draft genome sequence of clindamycin-resistant Bacillus safensis strain Ingolstadt isolated from a patient with bacterial colonization after heart surgery. The draft genome comprises 3.75 Mbp and harbors 3,793 predicted protein-encoding genes and a small plasmid.

20.
Genome Announc ; 5(10)2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28280006

RESUMO

In 1988, an outbreak of anthrax occurred among cattle in the Austrian state of Tyrol. Since then, Austria has been declared anthrax-free. Here, we report the draft genome sequence of one of these last outbreak strains, Bacillus anthracis Tyrol 4675, isolated from a diseased cow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA