Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
MethodsX ; 11: 102476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053622

RESUMO

Canine infectious respiratory disease (CIRD) is a complicated respiratory syndrome in dogs [1], [2], [3]. A panel PCR was developed [4] to detect nine pathogens commonly associated with CIRD: Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica; canine adenovirus type 2, canine herpesvirus 1, canine parainfluenza virus, canine distemper virus, canine influenza virus and canine respiratory coronavirus [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. To evaluate diagnostic performance of the assay, 740 nasal swab and lung tissue samples were collected and tested with the new assay, and compared to an older version of the assay detecting the same pathogens except that it does not differentiate the two Mycoplasma species. Results indicated that the new assay had the same level of specificity, but with higher diagnostic sensitivity and had identified additional samples with potential co-infections. To confirm the new assay is detecting the correct pathogens, samples with discrepant results between the two assays were sequence-confirmed. Spiking a high concertation target to samples carrying lower concentrations of other targets was carried out and the results demonstrated that there was no apparent interference among targets in the same PCR reaction. Another spike-in experiment was used to determine detection sensitivity between nasal swab and lung tissue samples, and similar results were obtained.•A nine-pathogen CIRD PCR panel assay had identified 139 positives from 740 clinical samples with 60 co-infections;•High-concentration target does not have apparent effect on detecting low-concentration targets;•Detection sensitivity were similar between nasal swab and lung tissue samples.

2.
Vet Immunol Immunopathol ; 266: 110682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000215

RESUMO

Bovine natural killer (bNK) cells are heterogeneous cell populations defined by constitutive expression of the natural cytotoxicity receptor, NKp46 (CD335). Two major subsets of bNK cells, classified by differential expression of CD2, display divergent functions in innate immunity, and are hypothesised to contribute to adaptive immunity following vaccination. Here we characterised phenotypic variation of bNK cells within afferent lymph and lymph node (LN) tissues and between CD2+ and CD2- bNK subsets, and report phenotypic changes induced by BCG vaccination. CD2- bNK cells, which dominate in the afferent lymph and LN, displayed lower expression of the activation marker CD25 within the LN, with CD25+ cells being less than half as frequent as in afferent lymph. Furthermore, we found bNK cells had a lower expression of CD45RB, associated in cattle with naïve cell status, within LN compared to afferent lymph. Following BCG vaccination, bNK cells in afferent lymph draining the vaccination site showed increased CD2-CD25+ frequencies and increased expression of CD25 on CD2+ bNK cells, although the frequency of these cells remained unchanged. In summary, we provide an overview of the phenotype of bNK cells within bovine lymphatic tissues, and provide an indication of how subsets may diverge following BCG vaccination.


Assuntos
Vacina BCG , Células Matadoras Naturais , Animais , Bovinos , Imunidade Inata , Linfonodos , Vacinação/veterinária
3.
Tob Use Insights ; 16: 1179173X221134855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636234

RESUMO

Introduction: Our primary purpose is to understand comorbidities and health outcomes associated with electronic nicotine delivery systems (ENDS) use. Methods: Study participants were Kaiser Permanente (KP) members from eight US regions who joined the Kaiser Permanente Research Bank (KPRB) from September 2015 through December 2019 and completed a questionnaire assessing demographic and behavioral factors, including ENDS and traditional cigarette use. Medical history and health outcomes were obtained from electronic health records. We used multinomial logistic regression to estimate odd ratios (ORs) and 95% confidence intervals (CIs) of current and former ENDS use according to member characteristics, behavioral factors, and clinical history. We used Cox regression to estimate hazard ratios (HRs) and 95% CIs comparing risk of health outcomes according to ENDS use. Results: Of 119 593 participants, 1594 (1%) reported current ENDS use and 5603 (5%) reported past ENDS use. ENDS users were more likely to be younger, male, gay or lesbian, and American Indian / Alaskan Native or Asian. After adjustment for confounding, current ENDS use was associated with current traditional cigarette use (OR = 39.55; CI:33.44-46.77), current marijuana use (OR = 6.72; CI:5.61-8.05), history of lung cancer (OR = 2.64; CI:1.42-4.92), non-stroke cerebral vascular disease (OR = 1.55; CI:1.21-1.99), and chronic obstructive pulmonary disease (OR = 2.16; CI:1.77-2.63). Current ENDS use was also associated with increased risk of emergency room (ER) visits (HR = 1.17; CI: 1.05-1.30) and death (HR = 1.84; CI:1.02-3.32). Conclusions: Concurrent traditional cigarette use, marijuana use, and comorbidities were prevalent among those who used ENDS, and current ENDS use was associated with an increased risk of ER visits and death. Additional research focused on health risks associated with concurrent ENDS and traditional cigarette use in those with underlying comorbidities is needed.

4.
Arch Womens Ment Health ; 26(1): 67-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633715

RESUMO

Poor prenatal sleep quality is associated with increased risk for depressive symptoms but may go undetected in brief, busy prenatal care visits. Among non-depressed pregnant participants, we evaluated whether 1) the endorsement of sleep disturbance on a depression questionnaire predicted postpartum depressive symptoms, 2) the strength of these associations was higher than other somatic symptoms of pregnancy and depression (i.e., fatigue, appetite disturbance), and 3) the endorsement of prenatal sleep disturbance varied by participant characteristics. In this retrospective cohort study, participants had a live birth and completed Patient Health Questionnaire (PHQ-9) during pregnancy and within 8 weeks postpartum between 2012 and 2017. Participants who were non-depressed during pregnancy (PHQ-9 < 10) were included (n = 3619). We operationalized sleep disturbance, fatigue, and appetite disturbance as endorsement of item 3, 4, and 5 on the PHQ-9, respectively, and postpartum depressive symptoms as PHQ-9 total score ≥ 10. Participant characteristic variables included age, race, ethnicity, parity, gestational age at delivery, and preterm birth. Prenatal sleep disturbance was associated with higher odds of postpartum depressive symptoms (aORs 1.9, 95% CI 1.2-3.1 for first trimester; 3.7, 95% CI 1.5-11.5 for second trimester; 3.4, 95% CI 1.9-6.8 for third trimester). Fatigue and appetite disturbance in the first and third trimesters were associated with higher odds of postpartum depressive symptoms. Sleep disturbance varied by race during the first and second trimesters (p < 0.05) and was highest among Black or African American participants (61.8-65.1%). A routinely administered single-item measure of sleep disturbance could identify otherwise lower-risk pregnant individuals who may benefit from depression prevention efforts.


Assuntos
Depressão Pós-Parto , Complicações na Gravidez , Nascimento Prematuro , Distúrbios do Início e da Manutenção do Sono , Recém-Nascido , Gravidez , Feminino , Humanos , Depressão Pós-Parto/diagnóstico , Depressão Pós-Parto/epidemiologia , Depressão/diagnóstico , Depressão/complicações , Estudos Retrospectivos , Sono , Complicações na Gravidez/diagnóstico , Complicações na Gravidez/epidemiologia
6.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36040802

RESUMO

CLN1 disease, also called infantile neuronal ceroid lipofuscinosis (NCL) or infantile Batten disease, is a fatal neurodegenerative lysosomal storage disorder resulting from mutations in the CLN1 gene encoding the soluble lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). Therapies for CLN1 disease have proven challenging because of the aggressive disease course and the need to treat widespread areas of the brain and spinal cord. Indeed, gene therapy has proven less effective for CLN1 disease than for other similar lysosomal enzyme deficiencies. We therefore tested the efficacy of enzyme replacement therapy (ERT) by administering monthly infusions of recombinant human PPT1 (rhPPT1) to PPT1-deficient mice (Cln1-/-) and CLN1R151X sheep to assess how to potentially scale up for translation. In Cln1-/- mice, intracerebrovascular (i.c.v.) rhPPT1 delivery was the most effective route of administration, resulting in therapeutically relevant CNS levels of PPT1 activity. rhPPT1-treated mice had improved motor function, reduced disease-associated pathology, and diminished neuronal loss. In CLN1R151X sheep, i.c.v. infusions resulted in widespread rhPPT1 distribution and positive treatment effects measured by quantitative structural MRI and neuropathology. This study demonstrates the feasibility and therapeutic efficacy of i.c.v. rhPPT1 ERT. These findings represent a key step toward clinical testing of ERT in children with CLN1 disease and highlight the importance of a cross-species approach to developing a successful treatment strategy.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Criança , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Humanos , Camundongos , Mutação , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Ovinos
7.
Clin Cancer Res ; 28(16): 3618-3629, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653148

RESUMO

PURPOSE: Endocrine therapy resistance (ETR) remains the greatest challenge in treating patients with hormone receptor-positive breast cancer. We set out to identify molecular mechanisms underlying ETR through in-depth genomic analysis of breast tumors. EXPERIMENTAL DESIGN: We collected pre-treatment and sequential on-treatment tumor samples from 35 patients with estrogen receptor-positive breast cancer treated with neoadjuvant then adjuvant endocrine therapy; 3 had intrinsic resistance, 19 acquired resistance, and 13 remained sensitive. Response was determined by changes in tumor volume neoadjuvantly and by monitoring for adjuvant recurrence. Twelve patients received two or more lines of endocrine therapy, with subsequent treatment lines being initiated at the time of development of resistance to the previous endocrine therapy. DNA whole-exome sequencing and RNA sequencing were performed on all samples, totalling 169 unique specimens. DNA mutations, copy-number alterations, and gene expression data were analyzed through unsupervised and supervised analyses to identify molecular features related to ETR. RESULTS: Mutations enriched in ETR included ESR1 and GATA3. The known ESR1 D538G variant conferring ETR was identified, as was a rarer E380Q variant that confers endocrine hypersensitivity. Resistant tumors which acquired resistance had distinct gene expression profiles compared with paired sensitive tumors, showing elevated pathways including ER, HER2, GATA3, AKT, RAS, and p63 signaling. Integrated analysis in individual patients highlighted the diversity of ETR mechanisms. CONCLUSIONS: The mechanisms underlying ETR are multiple and characterized by diverse changes in both somatic genetic and transcriptomic profiles; to overcome resistance will require an individualized approach utilizing genomic and genetic biomarkers and drugs tailored to each patient.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Receptores de Estrogênio/genética , Análise de Sequência de RNA , Sequenciamento do Exoma
8.
J Microbiol Methods ; 199: 106528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753509

RESUMO

Infectious respiratory disease is one of the most common diseases in dogs worldwide. Several bacterial and viral pathogens can serve as causative agents of canine infectious respiratory disease (CIRD), including Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica, canine adenovirus type 2 (CAdV-2), canine herpesvirus 1 (CHV-1), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine influenza virus (CIA) and canine respiratory coronavirus (CRCoV). Since these organisms cause similar clinical symptoms, disease diagnosis based on symptoms alone can be difficult. Therefore, a quick and accurate test is necessary to rapidly identify the presence and relative concentrations of causative CIRD agents. In this study, a multiplex real-time PCR panel assay was developed and composed of three subpanels for detection of the aforementioned pathogens. Correlation coefficients (R2) were >0.993 for all singleplex and multiplex real-time PCR assays with the exception of one that was 0.988; PCR amplification efficiencies (E) were between 92.1% and 107.8% for plasmid DNA, and 90.6-103.9% for RNA templates. In comparing singular and multiplex PCR assays, the three multiplex reactions generated similar R2 and E values to those by corresponding singular reactions, suggesting that multiplexing did not interfere with the detection sensitivities. The limit of detection (LOD) of the multiplex real-time PCR for DNA templates was 5, 2, 3, 1, 1, 1, 4, 24 and 10 copies per microliter for M. cynos, M. canis, B. brochiseptica, CAdV-2, CHV-1, CPIV, CDV, CIA and CRCoV, respectively; and 3, 2, 6, 17, 4 and 8 copies per microliter for CAdV-2, CHV-1, CPIV, CDV, CIA and CRCoV, respectively, when RNA templates were used for the four RNA viruses. No cross-detection was observed among the nine pathogens. For the 740 clinical samples tested, the newly designed PCR assay showed higher diagnostic sensitivity compared to an older panel assay; pathogen identities from selected samples positive by the new assay but undetected by the older assay were confirmed by Sanger sequencing. Our data showed that the new assay has higher diagnostic sensitivity while maintaining the assay's specificity, as compared to the older version of the panel assay.


Assuntos
Doenças do Cão , Infecções Respiratórias , Animais , DNA , Doenças do Cão/diagnóstico , Doenças do Cão/microbiologia , Cães , Reação em Cadeia da Polimerase Multiplex , RNA , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Sensibilidade e Especificidade
9.
Tob Use Insights ; 15: 1179173X221096638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492220

RESUMO

BACKGROUND: Although combustible cigarette use is an established risk factor for severe COVID-19 disease, there is conflicting evidence for the association of electronic cigarette use with SARS-CoV-2 infection and COVID-19 disease severity. METHODS: Study participants were from the Kaiser Permanente Research Bank (KPRB), a biorepository that includes adult Kaiser Permanente members from across the United States. Starting in April 2020, electronic surveys were sent to KPRB members to assess the impact of the COVID-19 pandemic. These surveys collected information on self-report of SARS-CoV-2 infection and COVID-related risk factors, including electronic cigarette and combustible cigarette smoking history. We also used electronic health records data to assess COVID-19 diagnoses, positive PCR lab tests, hospitalizations, and death. We used multivariable Cox proportional hazards regression to calculate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) comparing the risk of SARS-CoV-2 infection between individuals by e-cigarette use categories (never, former, and current). Among those with SARS-CoV-2 infection, we used multivariable logistic regression to estimate adjusted odds ratios (ORs) and 95% CIs comparing the odds of hospitalization or death within 30 days of infection between individuals by e-cigarette use categories. RESULTS: There were 126,475 individuals who responded to the survey and completed questions on e-cigarette and combustible cigarette use (48% response rate). Among survey respondents, 819 (1%) currently used e-cigarettes, 3,691 (3%) formerly used e-cigarettes, and 121,965 (96%) had never used e-cigarettes. After adjustment for demographic, behavioral, and clinical factors, there was no association with SARS-CoV-2 infection and former e-cigarette use (hazard ratio (HR) = 0.99; CI: 0.83-1.18) or current e-cigarette use (HR = 1.08; CI: 0.76-1.52). Among those with SARS-CoV-2 infection, there was no association with hospitalization or death within 30 days of infection and former e-cigarette use (odds ratio (OR) = 1.19; CI: 0.59-2.43) or current e-cigarette use (OR = 1.02; CI: 0.22-4.74). CONCLUSIONS: Our results suggest that e-cigarette use is not associated with an increased risk of SARS-CoV-2 infection or severe COVID-19 illness.

10.
Transbound Emerg Dis ; 69(5): e1618-e1631, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35218683

RESUMO

The SARS-CoV-2 virus is the causative agent of COVID-19 and has undergone continuous mutations throughout the pandemic. The more transmissible Omicron variant has quickly spread and is replacing the Delta variant as the most prevalent strain globally, including in the United States. A new molecular assay that can detect and differentiate both the Delta and Omicron variants was developed. A collection of 660,035 SARS-CoV-2 full- or near-full genomes, including 169,454 Delta variant and 24,202 Omicron variant strains, were used for primer and probe designs. In silico data analysis predicted an assay coverage of >99% of all strains, including >99% of the Delta and >99% of Omicron strains. The Omicron variant differential test was designed based on the Δ31-33 aa deletion in the N-gene, which is present in the original B.1.1.529 main genotype, BA.1, as well as in BA.2 and BA.3 subtypes. Therefore, the assay should detect the majority of all Omicron variant strains. Standard curves generated with human clinical samples indicated that the PCR amplification efficiencies were 104%, 90.7% and 90.4% for the Omicron, Delta, and non-Delta/non-Omicron wild-type genotypes, respectively. Correlation coefficients of the standard curves were all >0.99. The detection limit of the assay was 14.3, 32.0, and 21.5 copies per PCR reaction for Omicron, Delta, and wild-type genotypes, respectively. The assay was designed to specifically detect SAR-CoV-2 strains. Selected samples with Omicron, Delta and wild-type genotypes identified by the RT-qPCR assay were also confirmed by sequencing. The assay did not detect any animal coronavirus-positive samples that were tested. Human nasal swab samples that previously tested positive (n = 182) or negative (n = 42) for SARS-CoV-2 by the ThermoFisher TaqPath COVID-19 Combo Kit, produced the same result with the new assay. Among positive samples, 55.5% (101/182), 23.1% (42/182), and 21.4% (39/182) were identified as Omicron, Delta, and non-Omicron/non-Delta wild-type genotypes, respectively.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Humanos , Técnicas de Amplificação de Ácido Nucleico/veterinária , RNA Viral/genética , SARS-CoV-2/genética
11.
Vet Immunol Immunopathol ; 243: 110363, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861459

RESUMO

The bovine afferent lymphatic cannulation model allows collection of large volumes of afferent lymph and provides an opportunity to study lymphatic cells trafficking from the periphery directly ex-vivo. The technique requires surgical intervention, but influence of the procedure or time post-surgery on cells trafficking in the lymph has not been well documented. Here, we measured the volume of lymph and number of cells/mL collected daily over a two week time-course. Animal to animal variability was demonstrated but no consistent changes in lymph volume or cell density were observed in relation to time post-cannulation. Cell populations (dendritic cells, αß T-cells, γδ T-cells and NK cells) were analysed by flow cytometry at 1, 3 and 10 days post-cannulation (DPC) and a reduced percentage of γδ T-cells in afferent lymph was observed at 1 DPC. In addition, cell surface molecule expression by afferent lymphatic dendritic cells (ALDC) was assessed due to the key role of these cells in initiating an adaptive immune response. Co-stimulatory molecules CD80 and CD86 were upregulated by CD172a+ve ALDC early in the time-course, suggesting that the cannulation procedure and duration of experiment may impact the activation state of DCs in the naïve host. This should be considered when analysing the response of these cells to vaccines or pathogens.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Células Dendríticas , Linfa , Animais , Bovinos , Células Dendríticas/classificação , Citometria de Fluxo/veterinária , Linfa/citologia , Sistema Linfático , Fenótipo
12.
Transbound Emerg Dis ; 69(5): 2879-2889, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34964565

RESUMO

The Delta variant of SARS-CoV-2 has now become the predominant strain in the global COVID-19 pandemic. Strain coverage of some detection assays developed during the early pandemic stages has declined due to periodic mutations in the viral genome. We have developed a real-time RT-PCR (RT-qPCR) for SARS-CoV-2 detection that provides nearly 100% strain coverage, and differentiation of highly transmissible Delta variant strains. All full or nearly full (≥28 kb) SARS-CoV-2 genomes (n = 403,812), including 6422 Delta and 280 Omicron variant strains, were collected from public databases at the time of analysis and used for assay design. The two amino acid deletions in the spike gene (S-gene, Δ156-157) that is characteristic of the Delta variant were targeted during the assay design. Although strain coverage for the Delta variant was very high (99.7%), detection coverage for non-Delta wild-type strains was 93.9%, mainly due to the confined region of design. To increase strain coverage of the assay, the design for CDC N1 target was added to the assay. In silico analysis of 403,812 genomes indicated a 95.4% strain coverage for the CDC N1 target, however, in combination with our new non-Delta S-gene target, total coverage for non-Delta wild-type strains increased to 99.8%. A human 18S rRNA gene was also analyzed and used as an internal control. The final four-plex RT-qPCR assay generated PCR amplification efficiencies between 95.4% and 102.0% with correlation coefficients (R2 ) of >0.99 for cloned positive controls; Delta and non-Delta human clinical samples generated PCR efficiencies of 93.4%-97.0% and R2  > 0.99. The assay also detects 98.6% of 280 Omicron sequences. Assay primers and probes have no match to other closely related human coronaviruses, and did not produce a signal from samples positive to selected animal coronaviruses. Genotypes of selected clinical samples identified by the RT-qPCR were confirmed by Sanger sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética
13.
Biosens Bioelectron ; 197: 113728, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34763151

RESUMO

The development of robust implantable sensors is important in the successful advancement of personalised medicine as they have the potential to provide in situ real-time data regarding the status of health and disease and the effectiveness of treatment. Tissue pH is a key physiological parameter and herein, we report the design, fabrication, functionalisation, encapsulation and protection of a miniaturised, self-contained, electrochemical pH sensor system and characterisation of sensor performance. Notably for the first time in this environment the pH sensor was based on a methylene blue redox reporter which showed remarkable robustness, accuracy and sensitivity. This was achieved by encapsulation of a self-assembled monolayer containing methylene blue entrapped within a Nafion layer. Another powerful feature was the incorporation, within the same implanted device, of a fabricated on-chip Ag/AgCl reference electrode - vital in any electrochemical sensor, but often ignored. When utilised in vivo, the sensor allowed accurate tracking of externally induced pH changes within a naturally occurring ovine lung cancer model, and correlated well with single point laboratory measurements made on extracted arterial blood, whilst enabling in vivo time-dependent measurements. The sensors functioned robustly whilst implanted, and maintained in vitro function once extracted and together, these results demonstrate proof-of-concept of the ability to sense real-time intratumoral tissue pH changes in vivo.


Assuntos
Técnicas Biossensoriais , Azul de Metileno , Animais , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Oxirredução , Ovinos
14.
J Pers Med ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34945782

RESUMO

Radiation resistance is a significant challenge in the treatment of breast cancer in humans. Human breast cancer is commonly treated with surgery and adjuvant chemotherapy/radiotherapy, but recurrence and metastasis upon the development of therapy resistance results in treatment failure. Exosomes are extracellular vesicles secreted by most cell types and contain biologically active cargo that, when transferred to recipient cells, can influence the cells' genome and proteome. We propose that exosomes secreted by radioresistant (RR) cells may be able to disseminate the RR phenotype throughout the tumour. Here, we isolated exosomes from the human breast cancer cell line, MDA-MB-231, and the canine mammary carcinoma cell line, REM134, and their RR counterparts to investigate the effects of exosomes derived from RR cells on non-RR recipient cells. Canine mammary cancer cells lines have previously been shown to be excellent translational models of human breast cancer. This is consistent with our current data showing that exosomes derived from RR cells can increase cell viability and colony formation in naïve recipient cells and increase chemotherapy and radiotherapy resistance, in both species. These results are consistent in cancer stem cell and non-cancer stem cell populations. Significantly, exosomes derived from RR cells increased the tumoursphere-forming ability of recipient cells compared to exosomes derived from non-RR cells. Our results show that exosomes are potential mediators of radiation resistance that could be therapeutically targeted.

15.
J Pers Med ; 11(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34834425

RESUMO

IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.

16.
Cancers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771454

RESUMO

Cancer therapy resistance is a persistent clinical challenge. Recently, inhibition of the mutagenic translesion synthesis (TLS) protein REV1 was shown to enhance tumor cell response to chemotherapy by triggering senescence hallmarks. These observations suggest REV1's important role in determining cancer cell response to chemotherapy. Whether REV1 inhibition would similarly sensitize cancer cells to radiation treatment is unknown. This study reports a lack of radiosensitization in response to REV1 inhibition by small molecule inhibitors in ionizing radiation-exposed cancer cells. Instead, REV1 inhibition unexpectedly triggers autophagy, which is a known biomarker of radioresistance. We report a possible role of the REV1 TLS protein in determining cancer treatment outcomes depending upon the type of DNA damage inflicted. Furthermore, we discover that REV1 inhibition directly triggers autophagy, an uncharacterized REV1 phenotype, with a significant bearing on cancer treatment regimens.

17.
J Pers Med ; 11(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34357131

RESUMO

Worldwide, prostate cancer (PC) is the second-most-frequently diagnosed male cancer and the fifth-most-common cause of all cancer-related deaths. Suspicion of PC in a patient is largely based upon clinical signs and the use of prostate-specific antigen (PSA) levels. Although PSA levels have been criticised for a lack of specificity, leading to PC over-diagnosis, it is still the most commonly used biomarker in PC management. Unfortunately, PC is extremely heterogeneous, and it can be difficult to stratify patients whose tumours are unlikely to progress from those that are aggressive and require treatment intensification. Although PC-specific biomarker research has previously focused on disease diagnosis, there is an unmet clinical need for novel prognostic, predictive and treatment response biomarkers that can be used to provide a precision medicine approach to PC management. In particular, the identification of biomarkers at the time of screening/diagnosis that can provide an indication of disease aggressiveness is perhaps the greatest current unmet clinical need in PC management. Largely through advances in genomic and proteomic techniques, exciting pre-clinical and clinical research is continuing to identify potential tissue, blood and urine-based PC-specific biomarkers that may in the future supplement or replace current standard practices. In this review, we describe how PC-specific biomarker research is progressing, including the evolution of PSA-based tests and those novel assays that have gained clinical approval. We also describe alternative diagnostic biomarkers to PSA, in addition to biomarkers that can predict PC aggressiveness and biomarkers that can predict response to certain therapies. We believe that novel biomarker research has the potential to make significant improvements to the clinical management of this disease in the near future.

18.
Micromachines (Basel) ; 12(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357220

RESUMO

Anastomotic leakage (AL) is a common and dangerous post-operative complication following intestinal resection, causing substantial morbidity and mortality. Ischaemia in the tissue surrounding the anastomosis is a major risk-factor for AL development. Continuous tissue oxygenation monitoring during the post-operative recovery period would provide early and accurate early identification of AL risk. We describe the construction and testing of a miniature implantable electrochemical oxygen sensor that addresses this need. It consisted of an array of platinum microelectrodes, microfabricated on a silicon substrate, with a poly(2-hydroxyethyl methacrylate) hydrogel membrane to protect the sensor surface. The sensor was encapsulated in a biocompatible package with a wired connection to external instrumentation. It gave a sensitive and highly linear response to variations in oxygen partial pressure in vitro, although over time its sensitivity was partially decreased by protein biofouling. Using a pre-clinical in vivo pig model, acute intestinal ischaemia was robustly and accurately detected by the sensor. Graded changes in tissue oxygenation were also measurable, with relative differences detected more accurately than absolute differences. Finally, we demonstrated its suitability for continuous monitoring of tissue oxygenation at a colorectal anastomosis over a period of at least 45 h. This study provides evidence to support the development and use of implantable electrochemical oxygen sensors for post-operative monitoring of anastomosis oxygenation.

19.
J Pers Med ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34442440

RESUMO

Radiotherapy (RT) is an important treatment modality for the local control of breast cancer (BC). Unfortunately, not all patients that receive RT will obtain a therapeutic benefit, as cancer cells that either possess intrinsic radioresistance or develop resistance during treatment can reduce its efficacy. For RT treatment regimens to become personalised, there is a need to identify biomarkers that can predict and/or monitor a tumour's response to radiation. Here we describe a novel method to identify such biomarkers. Liquid chromatography-mass spectrometry (LC-MS) was used on conditioned media (CM) samples from a radiosensitive oestrogen receptor positive (ER+) BC cell line (MCF-7) to identify cancer-secreted biomarkers which reflected a response to radiation. A total of 33 radiation-induced secreted proteins that had higher (up to 12-fold) secretion levels at 24 h post-2 Gy radiation were identified. Secretomic results were combined with whole-transcriptome gene expression experiments, using both radiosensitive and radioresistant cells, to identify a signature related to intrinsic radiosensitivity. Gene expression analysis assessing the levels of the 33 proteins showed that 5 (YBX3, EIF4EBP2, DKK1, GNPNAT1 and TK1) had higher expression levels in the radiosensitive cells compared to their radioresistant derivatives; 3 of these proteins (DKK1, GNPNAT1 and TK1) underwent in-lab and initial clinical validation. Western blot analysis using CM samples from cell lines confirmed a significant increase in the release of each candidate biomarker from radiosensitive cells 24 h after treatment with a 2 Gy dose of radiation; no significant increase in secretion was observed in the radioresistant cells after radiation. Immunohistochemistry showed that higher intracellular protein levels of the biomarkers were associated with greater radiosensitivity. Intracellular levels were further assessed in pre-treatment biopsy tissues from patients diagnosed with ER+ BC that were subsequently treated with breast-conserving surgery and RT. High DKK1 and GNPNAT1 intracellular levels were associated with significantly increased recurrence-free survival times, indicating that these two candidate biomarkers have the potential to predict sensitivity to RT. We suggest that the methods highlighted in this study could be utilised for the identification of biomarkers that may have a potential clinical role in personalising and optimising RT dosing regimens, whilst limiting the administration of RT to patients who are unlikely to benefit.

20.
J Pers Med ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210062

RESUMO

Novel biomarkers are needed to continue to improve breast cancer clinical management and outcome. IL6-like cytokines, whose pleiotropic functions include roles in many hallmarks of malignancy, rely on the signal transducer IL6ST (gp130) for all their signalling. To date, 10 separate independent studies based on the analysis of clinical breast cancer samples have identified IL6ST as a predictor. Consistent findings suggest that IL6ST is a positive prognostic factor and is associated with ER status. Interestingly, these studies include 4 multigene signatures (EndoPredict, EER4, IRSN-23 and 42GC) that incorporate IL6ST to predict risk of recurrence or outcome from endocrine or chemotherapy. Here we review the existing evidence on the promising predictive and prognostic value of IL6ST. We also discuss how this potential could be further translated into clinical practice beyond the EndoPredict tool, which is already available in the clinic. The most promising route to further exploit IL6ST's promising predicting power will likely be through additional hybrid multifactor signatures that allow for more robust stratification of ER+ breast tumours into discrete groups with distinct outcomes, thus enabling greater refinement of the treatment-selection process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA