Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
J AOAC Int ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704865

RESUMO

BACKGROUND: Infant formulas, pediatric and adult nutritional products are being fortified with bovine lactoferrin (bLF) due to its beneficial impacts on immune development and gut health. Lactoferrin supplementation into these products requires an analytical method to accurately quantify the concentrations of bLF to meet global regulatory and quality standards. OBJECTIVE: To develop and validate a lactoferrin method capable of meeting the AOAC Standard Method Performance Requirements (SMPR requirements 2020.005). METHOD: Powder formula samples are extracted using warm dibasic phosphate buffer, pH 8, then centrifuged at 4 °C to remove insoluble proteins, fat, and other solids. The soluble fraction is further purified on a HiTrap heparin solid-phase extraction column to isolate bLF from interferences. Samples are filtered, then analyzed by LC-UV using a protein BEH C4 analytical column and quantitated via external calibrant. RESULTS: The limit of quantitation (2 mg/100g), repeatability (2.0-4.8% RSD), recovery (92.1-97.7%) and analytical range (∼4-193 mg/100g) all meet the method requirements as stated in SMPR 2020.005 for lactoferrin. CONCLUSIONS: The reported single lab validation results demonstrate the ability of this lactoferrin method to meet or exceed the method performance requirements to measure soluble, intact, non-denatured bLF in infant and adult nutritional powder formulas. HIGHLIGHTS: The use of a heparin affinity column to isolate lactoferrin from bovine milk products combined with a selective analytical chromatographic column provides suitable analyte specificity without requiring proprietary equipment or reagents.

2.
J Med Imaging (Bellingham) ; 11(2): 024504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576536

RESUMO

Purpose: The Medical Imaging and Data Resource Center (MIDRC) was created to facilitate medical imaging machine learning (ML) research for tasks including early detection, diagnosis, prognosis, and assessment of treatment response related to the coronavirus disease 2019 pandemic and beyond. The purpose of this work was to create a publicly available metrology resource to assist researchers in evaluating the performance of their medical image analysis ML algorithms. Approach: An interactive decision tree, called MIDRC-MetricTree, has been developed, organized by the type of task that the ML algorithm was trained to perform. The criteria for this decision tree were that (1) users can select information such as the type of task, the nature of the reference standard, and the type of the algorithm output and (2) based on the user input, recommendations are provided regarding appropriate performance evaluation approaches and metrics, including literature references and, when possible, links to publicly available software/code as well as short tutorial videos. Results: Five types of tasks were identified for the decision tree: (a) classification, (b) detection/localization, (c) segmentation, (d) time-to-event (TTE) analysis, and (e) estimation. As an example, the classification branch of the decision tree includes two-class (binary) and multiclass classification tasks and provides suggestions for methods, metrics, software/code recommendations, and literature references for situations where the algorithm produces either binary or non-binary (e.g., continuous) output and for reference standards with negligible or non-negligible variability and unreliability. Conclusions: The publicly available decision tree is a resource to assist researchers in conducting task-specific performance evaluations, including classification, detection/localization, segmentation, TTE, and estimation tasks.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38645463

RESUMO

Purpose: To rule out hemorrhage, non-contrast CT (NCCT) scans are used for early evaluation of patients with suspected stroke. Recently, artificial intelligence tools have been developed to assist with determining eligibility for reperfusion therapies by automating measurement of the Alberta Stroke Program Early CT Score (ASPECTS), a 10-point scale with > 7 or ≤ 7 being a threshold for change in functional outcome prediction and higher chance of symptomatic hemorrhage, and hypodense volume. The purpose of this work was to investigate the effects of CT reconstruction kernel and slice thickness on ASPECTS and hypodense volume. Methods: The NCCT series image data of 87 patients imaged with a CT stroke protocol at our institution were reconstructed with 3 kernels (H10s-smooth, H40s-medium, H70h-sharp) and 2 slice thicknesses (1.5mm and 5mm) to create a reference condition (H40s/5mm) and 5 non-reference conditions. Each reconstruction for each patient was analyzed with the Brainomix e-Stroke software (Brainomix, Oxford, England) which yields an ASPECTS value and measure of total hypodense volume (mL). Results: An ASPECTS value was returned for 74 of 87 cases in the reference condition (13 failures). ASPECTS in non-reference conditions changed from that measured in the reference condition for 59 cases, 7 of which changed above or below the clinical threshold of 7 for 3 non-reference conditions. ANOVA tests were performed to compare the differences in protocols, Dunnett's post-hoc tests were performed after ANOVA, and a significance level of p < 0.05 was defined. There was no significant effect of kernel (p = 0.91), a significant effect of slice thickness (p < 0.01) and no significant interaction between these factors (p = 0.91). Post-hoc tests indicated no significant difference between ASPECTS estimated in the reference and any non-reference conditions. There was a significant effect of kernel (p < 0.01) and slice thickness (p < 0.01) on hypodense volume, however there was no significant interaction between these factors (p = 0.79). Post-hoc tests indicated significantly different hypodense volume measurements for H10s/1.5mm (p = 0.03), H40s/1.5mm (p < 0.01), H70h/5mm (p < 0.01). No significant difference was found in hypodense volume measured in the H10s/5mm condition (p = 0.96). Conclusion: Automated ASPECTS and hypodense volume measurements can be significantly impacted by reconstruction kernel and slice thickness.

4.
Med J Aust ; 220(8): 428-434, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38571440

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally and is responsible for an estimated one-third of deaths as well as significant morbidity and health care utilisation. Technological and bioinformatic advances have facilitated the discovery of pathogenic germline variants for some specific CVDs, including familial hypercholesterolaemia, cardiomyopathies and arrhythmic syndromes. Use of these genetic tests for earlier disease identification is increasing due, in part, to decreasing costs, Medicare rebates, and consumer comfort with genetic testing. However, CVDs that occur more commonly, including coronary artery disease and atrial fibrillation, do not display monogenic inheritance patterns. Genetically, these diseases have generally been associated with many genetic variants each with a small effect size. This complexity can be expressed mathematically as a polygenic risk score. Genetic testing kits that provide polygenic risk scoring are becoming increasingly available directly to private-paying consumers outside the traditional clinical setting. An improved understanding of the evidence of genetics in CVD will offer clinicians new opportunities for individualised risk prediction and preventive therapy.


Assuntos
Doenças Cardiovasculares , Predisposição Genética para Doença , Testes Genéticos , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Testes Genéticos/métodos , Medição de Risco/métodos
5.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496647

RESUMO

The innate immune system employs a variety of antimicrobial oxidants to control and kill host-associated bacteria. Hypothiocyanite/hypothiocyanous acid (-OSCN/HOSCN) is one such antimicrobial oxidant that is synthesized by lactoperoxidase, myeloperoxidase, and eosinophil peroxidase at sites throughout the human body. HOSCN has potent antibacterial activity while being largely non-toxic towards human cells. The molecular mechanisms by which bacteria sense and defend themselves against HOSCN have only recently begun to be elaborated, notably by the discovery of bacterial HOSCN reductase (RclA), an HOSCN-degrading enzyme widely conserved among bacteria that live on epithelial surfaces. In this paper, I show that Ni2+ sensitizes Escherichia coli to HOSCN by inhibiting glutathione reductase, and that inorganic polyphosphate protects E. coli against this effect, probably by chelating Ni2+ ions. I also found that RclA is very sensitive to inhibition by Cu2+ and Zn2+, metals that are accumulated to high levels by innate immune cells, and that, surprisingly, thioredoxin and thioredoxin reductase are not involved in HOSCN stress resistance in E. coli. These results advance our understanding of the contribution of different oxidative stress response and redox buffering pathways to HOSCN resistance in E. coli and illustrate important interactions between metal ions and the enzymes bacteria use to defend themselves against oxidative stress.

6.
Biomedicines ; 12(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255225

RESUMO

Coronavirus disease 2019 (COVID-19), is an ongoing issue in certain populations, presenting rapidly worsening pneumonia and persistent symptoms. This study aimed to test the predictability of rapid progression using radiographic scores and laboratory markers and present longitudinal changes. This retrospective study included 218 COVID-19 pneumonia patients admitted at the Chungnam National University Hospital. Rapid progression was defined as respiratory failure requiring mechanical ventilation within one week of hospitalization. Quantitative COVID (QCOVID) scores were derived from high-resolution computed tomography (CT) analyses: (1) ground glass opacity (QGGO), (2) mixed diseases (QMD), and (3) consolidation (QCON), and the sum, quantitative total lung diseases (QTLD). Laboratory data, including inflammatory markers, were obtained from electronic medical records. Rapid progression was observed in 9.6% of patients. All QCOVID scores predicted rapid progression, with QMD showing the best predictability (AUC = 0.813). In multivariate analyses, the QMD score and interleukin(IL)-6 level were important predictors for rapid progression (AUC = 0.864). With >2 months follow-up CT, remained lung lesions were observed in 21 subjects, even after several weeks of negative reverse transcription polymerase chain reaction test. AI-driven quantitative CT scores in conjugation with laboratory markers can be useful in predicting the rapid progression and monitoring of COVID-19.

7.
Med Phys ; 51(2): 809-825, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37477551

RESUMO

BACKGROUND: There is increasing interest in using ultrasound for thermal ablation, histotripsy, and thermal or cavitational enhancement of drug delivery for the treatment of pancreatic cancer. Ultrasonic and thermal modelling conducted as part of the treatment planning process requires acoustic property values for all constituent tissues, but the literature contains no data for the human pancreas. PURPOSE: This study presents the first acoustic property measurements of human pancreatic samples and provides examples of how these properties impact a broad range of ultrasound therapies. METHODS: Data were collected on human pancreatic tissue samples at physiological temperature from 23 consented patients in cooperation with a hospital pathology laboratory. Propagation of ultrasound over the 2.1-4.5 MHz frequency range through samples of various thicknesses and pathologies was measured using a set of custom-built ultrasonic calipers, with the data processed to estimate sound speed and attenuation. The results were used in acoustic and thermal simulations to illustrate the impacts on extracorporeal ultrasound therapies for mild hyperthermia, thermal ablation, and histotripsy implemented with a CE-marked clinical system operating at 0.96 MHz. RESULTS: The mean sound speed and attenuation coefficient values for human samples were well below the range of values in the literature for non-human pancreata, while the human attenuation power law exponents were substantially higher. The simulated impacts on ultrasound mediated therapies for the pancreas indicated that when using the human data instead of the literature average, there was a 30% reduction in median temperature elevation in the treatment volume for mild hyperthermia and 43% smaller volume within a 60°C contour for thermal ablation, all driven by attenuation. By comparison, impacts on boiling and intrinsic threshold histotripsy were minor, with peak pressures changing by less than 15% (positive) and 1% (negative) as a consequence of the counteracting effects of attenuation and sound speed. CONCLUSION: This study provides the most complete set of speed of sound and attenuation data available for the human pancreas, and it reiterates the importance of acoustic material properties in the planning and conduct of ultrasound-mediated procedures, particularly thermal therapies.


Assuntos
Neoplasias Pancreáticas , Terapia por Ultrassom , Humanos , Som , Ultrassonografia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Pâncreas/diagnóstico por imagem
8.
J Med Imaging (Bellingham) ; 10(6): 064501, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074627

RESUMO

Purpose: The Medical Imaging and Data Resource Center (MIDRC) is a multi-institutional effort to accelerate medical imaging machine intelligence research and create a publicly available image repository/commons as well as a sequestered commons for performance evaluation and benchmarking of algorithms. After de-identification, approximately 80% of the medical images and associated metadata become part of the open commons and 20% are sequestered from the open commons. To ensure that both commons are representative of the population available, we introduced a stratified sampling method to balance the demographic characteristics across the two datasets. Approach: Our method uses multi-dimensional stratified sampling where several demographic variables of interest are sequentially used to separate the data into individual strata, each representing a unique combination of variables. Within each resulting stratum, patients are assigned to the open or sequestered commons. This algorithm was used on an example dataset containing 5000 patients using the variables of race, age, sex at birth, ethnicity, COVID-19 status, and image modality and compared resulting demographic distributions to naïve random sampling of the dataset over 2000 independent trials. Results: Resulting prevalence of each demographic variable matched the prevalence from the input dataset within one standard deviation. Mann-Whitney U test results supported the hypothesis that sequestration by stratified sampling provided more balanced subsets than naïve randomization, except for demographic subcategories with very low prevalence. Conclusions: The developed multi-dimensional stratified sampling algorithm can partition a large dataset while maintaining balance across several variables, superior to the balance achieved from naïve randomization.

9.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067464

RESUMO

Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Ultrassonografia
10.
ACS Appl Bio Mater ; 6(12): 5746-5758, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38048163

RESUMO

Delivering cargo to the cell membranes of specific cell types in the body is a major challenge for a range of treatments, including immunotherapy. This study investigates employing protein-decorated microbubbles (MBs) and ultrasound (US) to "tag" cellular membranes of interest with a specific protein. Phospholipid-coated MBs were produced and functionalized with a model protein using a metallochelating complex through an NTA(Ni) and histidine residue interaction. Successful "tagging" of the cellular membrane was observed using microscopy in adherent cells and was promoted by US exposure. Further modification of the MB surface to enable selective binding to target cells was then achieved by functionalizing the MBs with a targeting protein (transferrin) that specifically binds to a receptor on the target cell membrane. Attachment and subsequent transfer of material from MBs functionalized with transferrin to the target cells significantly increased, even in the absence of US. This work demonstrates the potential of these MBs as a platform for the noninvasive delivery of proteins to the surface of specific cell types.


Assuntos
Microbolhas , Fosfolipídeos , Ultrassonografia , Membrana Celular/metabolismo , Transferrinas/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(47): e2307551120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967223

RESUMO

In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Nasal/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Mucosa Respiratória/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
13.
Front Med (Lausanne) ; 10: 1151867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840998

RESUMO

Purpose: Recent advancements in obtaining image-based biomarkers from CT images have enabled lung function characterization, which could aid in lung interventional planning. However, the regional heterogeneity in these biomarkers has not been well documented, yet it is critical to several procedures for lung cancer and COPD. The purpose of this paper is to analyze the interlobar and intralobar heterogeneity of tissue elasticity and study their relationship with COPD severity. Methods: We retrospectively analyzed a set of 23 lung cancer patients for this study, 14 of whom had COPD. For each patient, we employed a 5DCT scanning protocol to obtain end-exhalation and end-inhalation images and semi-automatically segmented the lobes. We calculated tissue elasticity using a biomechanical property estimation model. To obtain a measure of lobar elasticity, we calculated the mean of the voxel-wise elasticity values within each lobe. To analyze interlobar heterogeneity, we defined an index that represented the properties of the least elastic lobe as compared to the rest of the lobes, termed the Elasticity Heterogeneity Index (EHI). An index of 0 indicated total homogeneity, and higher indices indicated higher heterogeneity. Additionally, we measured intralobar heterogeneity by calculating the coefficient of variation of elasticity within each lobe. Results: The mean EHI was 0.223 ± 0.183. The mean coefficient of variation of the elasticity distributions was 51.1% ± 16.6%. For mild COPD patients, the interlobar heterogeneity was low compared to the other categories. For moderate-to-severe COPD patients, the interlobar and intralobar heterogeneities were highest, showing significant differences from the other groups. Conclusion: We observed a high level of lung tissue heterogeneity to occur between and within the lobes in all COPD severity cases, especially in moderate-to-severe cases. Heterogeneity results demonstrate the value of a regional, function-guided approach like elasticity for procedures such as surgical decision making and treatment planning.

14.
BMC Cancer ; 23(1): 896, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741968

RESUMO

BACKGROUND: The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tumour target. PanDox is designed as a Phase 1 single centre study to investigate enhancing drug delivery to adult patients with non-operable pancreatic ductal adenocarcinomas. The study compares a single cycle of either conventional doxorubicin alone or ThermoDox® with focused ultrasound-induced hyperthermia for targeted drug release. METHODS: Adults with non-resectable pancreatic ductal adenocarcinoma are allocated to receive a single cycle of either doxorubicin alone (Arm A) or ThermoDox® with focused ultrasound-induced hyperthermia (Arm B), based on patient- and tumour-specific safety conditions. Participants in Arm B will undergo a general anaesthetic and pre-heating of the tumour by extra-corporal focused ultrasound (FUS). Rather than employing invasive thermometry, ultrasound parameters are derived from a patient-specific treatment planning model to reach the 41 °C target temperature for drug release. ThermoDox® is then concurrently infused with further ultrasound exposure. Tumour biopsies at the targeted site from all patients are analysed post-treatment using high performance liquid chromatography to quantify doxorubicin delivered to the tumour. The primary endpoint is defined as a statistically significant enhancement in concentration of total intra-tumoural doxorubicin, comparing samples from patients receiving liposomal drug with FUS to free drug alone. Participants are followed for 21 days post-treatment to assess secondary endpoints, including radiological assessment to measure changes in tumour activity by Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST) criteria, adverse events and patient-reported symptoms. DISCUSSION: This early phase study builds on previous work targeting tumours in the liver to investigate whether enhancement of chemotherapy delivery using ultrasound-mediated hyperthermia can be translated to the stroma-dense environment of pancreatic ductal adenocarcinoma. If successful, it could herald a new approach towards managing these difficult-to-treat tumours. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04852367 . Registered 21st April 2022. EudraCT number: 2019-003950-10 (Registered 2019) Iras Project ID: 272253 (Registered 2019) Ethics Number: 20/EE/0284.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Policetídeos , Adulto , Humanos , Tomografia Computadorizada por Raios X , Doxorrubicina/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Antraciclinas , Antibióticos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Neoplasias Pancreáticas
15.
Pharmaceutics ; 15(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37765176

RESUMO

Welcome to this special issue on Cavitation-Enhanced Drug Delivery and Immunotherapy-a rapidly evolving area that has been buoyed in recent years by the development of methods harnessing the activity of ultrasound-stimulated bubbles known as cavitation [...].

16.
J Am Coll Cardiol ; 82(13): 1343-1359, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37730292

RESUMO

Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/epidemiologia , Procedimentos Clínicos , Fatores de Risco de Doenças Cardíacas
17.
Biomolecules ; 13(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627252

RESUMO

Risk-factor-based scoring systems for atherosclerotic coronary artery disease (CAD) remain concerningly inaccurate at the level of the individual and would benefit from the addition of biomarkers that correlate with atherosclerosis burden directly. We hypothesized that serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) would be independently associated with CAD and investigated this in the BioHEART study using 968 participants with CT coronary angiograms, which were scored for disease burden in the form of coronary artery calcium scores (CACS), Gensini scores, and a semi-quantitative soft-plaque score (SPS). Serum sLOX-1 was assessed by ELISA and was incorporated into regression models for disease severity and incidence. We demonstrate that sLOX-1 is associated with an improvement in the prediction of CAD severity when scored by Gensini or SPS, but not CACS. sLOX-1 also significantly improved the prediction of the incidence of obstructive CAD, defined as stenosis in any vessel >75%. The predictive value of sLOX-1 was significantly greater in the subgroup of patients who did not have any of the standard modifiable cardiovascular risk factors (SMuRFs). sLOX-1 is associated with CAD severity and is the first biomarker shown to have utility for risk prediction in the SMuRFless population.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Angiografia Coronária , Artérias , Receptores Depuradores Classe E
18.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371497

RESUMO

The current coronary artery disease (CAD) risk scores for predicting future cardiovascular events rely on well-recognized traditional cardiovascular risk factors derived from a population level but often fail individuals, with up to 25% of first-time heart attack patients having no risk factors. Non-invasive imaging technology can directly measure coronary artery plaque burden. With an advanced lipidomic measurement methodology, for the first time, we aim to identify lipidomic biomarkers to enable intervention before cardiovascular events. With 994 participants from BioHEART-CT Discovery Cohort, we collected clinical data and performed high-performance liquid chromatography with mass spectrometry to determine concentrations of 683 plasma lipid species. Statin-naive participants were selected based on subclinical CAD (sCAD) categories as the analytical cohort (n = 580), with sCAD+ (n = 243) compared to sCAD- (n = 337). Through a machine learning approach, we built a lipid risk score (LRS) and compared the performance of the existing Framingham Risk Score (FRS) in predicting sCAD+. We obtained individual classifiability scores and determined Body Mass Index (BMI) as the modifying variable. FRS and LRS models achieved similar areas under the receiver operating characteristic curve (AUC) in predicting the validation cohort. LRS enhanced the prediction of sCAD+ in the healthy-weight group (BMI < 25 kg/m2), where FRS performed poorly and identified individuals at risk that FRS missed. Lipid features have strong potential as biomarkers to predict CAD plaque burden and can identify residual risk not captured by traditional risk factors/scores. LRS compliments FRS in prediction and has the most significant benefit in healthy-weight individuals.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Lipidômica , Angiografia Coronária/métodos , Medição de Risco , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Biomarcadores , Lipídeos
19.
Am Heart J ; 264: 163-173, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364748

RESUMO

BACKGROUND: Identifying and targeting established modifiable risk factors has been a successful strategy for reducing the burden of coronary artery disease (CAD) at the population-level. However, up to 1-in-4 patients who present with ST elevation myocardial infarction do so in the absence of such risk factors. Polygenic risk scores (PRS) have demonstrated an ability to improve risk prediction models independent of traditional risk factors and self-reported family history, but a pathway for implementation has yet to be clearly identified. The aim of this study is to examine the utility of a CAD PRS to identify individuals with subclinical CAD via a novel clinical pathway, triaging low or intermediate absolute risk individuals for noninvasive coronary imaging, and examining the impact on shared treatment decisions and participant experience. TRIAL DESIGN: The ESCALATE study is a 12-month, prospective, multicenter implementation study incorporating PRS into otherwise standard primary care CVD risk assessments, to identify patients at increased lifetime CAD risk for noninvasive coronary imaging. One-thousand eligible participants aged 45 to 65 years old will enter the study, which applies PRS to those considered low or moderate 5-year absolute CVD risk and triages those with CAD PRS ≥80% for a coronary calcium scan. The primary outcome will be the identification of subclinical CAD, defined as a coronary artery calcium score (CACS) >0 Agatston units (AU). Multiple secondary outcomes will be assessed, including baseline CACS ≥100 AU or ≥75th age-/sex-matched percentile, the use and intensity of lipid- and blood pressure-lowering therapeutics, cholesterol and blood pressure levels, and health-related quality of life (HRQOL). CONCLUSION: This novel trial will generate evidence on the ability of a PRS-triaged CACS to identify subclinical CAD, as well as subsequent differences in traditional risk factor medical management, pharmacotherapy utilization, and participant experience. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12622000436774. Trial was prospectively registered on March 18, 2022. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383134.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Pessoa de Meia-Idade , Idoso , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Cálcio , Estudos Prospectivos , Qualidade de Vida , Triagem , Austrália , Fatores de Risco , Medição de Risco , Angiografia Coronária/métodos , Estudos Multicêntricos como Assunto
20.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373413

RESUMO

Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs. Here, we introduced the most common CF mutation, ΔF508, into the CFTR gene, using TALENs into hPSCs, and corrected the W1282X mutation using CRISPR-Cas9, in human-induced PSCs. This relatively simple method achieved up to 10% efficiency without the need for FACS, generating heterozygous and homozygous gene edited hPSCs within 3-6 weeks in order to understand genetic determinants of disease and precision medicine.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes/metabolismo , Mutação , Heterozigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA