Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncotarget ; 9(3): 3432-3445, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423057

RESUMO

Interleukin-34 (IL-34), a cytokine produced by a wide range of cells, binds to the macrophage colony-stimulating factor receptor (M-CSFR-1) and receptor-type protein-tyrosine phosphatase zeta (PTP-z) and controls myeloid cell differentiation, proliferation and survival. various types of cancers over-express IL-34 but the role of the cytokine in colorectal cancer (CRC) remains unknown. We here investigated the expression and functional role of IL-34 in CRC. A more pronounced expression of IL-34 was seen in CRC samples as compared to matched normal/benign colonic samples and this occurred at both RNA and protein level. Immunohistochemical analysis of CRC tissue samples showed that both cancer cells and lamina propria mononuclear cells over-expressed IL-34. Additionally, CRC cells expressed both M-CSFR-1 and PTP-z, thus suggesting that CRC cells can be responsive to IL-34. Indeed, stimulation of DLD-1 cancer cells with IL-34, but not with MSCF1, enhanced the cell proliferation and cell invasion without affecting cell survival. Analysis of intracellular signals underlying the mitogenic effect of IL-34 revealed that the cytokine enhanced activation of ERK1/2 and pharmacologic inhibition of ERK1/2 abrogated IL-34-driven cell proliferation. Consistently, IL-34 knockdown in HT-29 cells with a specific IL-34 antisense oligonucleotide reduced ERK1/2 activation, cell proliferation and enhanced the susceptibility of cells to Oxaliplatin-induced death. This is the first study showing up-regulation of IL-34 in CRC and suggesting a role for this cytokine in colon tumorigenesis.

2.
Curr Top Med Chem ; 16(1): 54-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26139114

RESUMO

The extensive search for alternative therapeutics against microbial pathogens has led to the discovery of cationic peptides as new anti-infectives with a novel mode of action. Particular interest has been devoted to small linear peptides that can be efficiently made by chemical synthesis at competitive costs. The most promising originate from a large family of short, naturally occurring peptides found in the skin of amphibia of Rana genus, i.e. the temporins. This review is mainly focused on the recent structure-function studies of the earliest known temporin isoforms (TA, TB and TL) and their potential clinical role as novel antimicrobial agents. The development of novel antibiotics is an urgent public health concern due to the increased resistance of microorganisms to conventional antibiotics, particularly in the hospital setting.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos/farmacologia , Peptídeos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias/citologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/isolamento & purificação , Rana temporaria , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA