RESUMO
Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1-CSF1R-C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker.
Assuntos
Biomarcadores Tumorais/metabolismo , Heme Oxigenase-1/metabolismo , Neoplasias Pulmonares/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral/transplante , Quimioterapia Adjuvante/métodos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/imunologia , Feminino , Heme/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/sangue , Heme Oxigenase-1/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Masculino , Melanoma/mortalidade , Melanoma/secundário , Melanoma/terapia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/metabolismo , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
The interleukin-(IL-)17 family of cytokines is composed of six members named IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. IL-17A is the prototype of this family, and it was the first to be discovered and targeted in the clinic. IL-17A is essential for modulating the interplay between commensal microbes and epithelial cells at our borders (i.e., skin and mucosae), and yet, for protecting us from microbial invaders, thus preserving mucosal and skin integrity. Interactions between the microbiota and cells producing IL-17A have also been implicated in the pathogenesis of immune mediated inflammatory diseases and cancer. While interactions between microbiota and IL-17B-to-F have only partially been investigated, they are by no means less relevant. The cellular source of IL-17B-to-F, their main targets, and their function in homeostasis and disease distinguish IL-17B-to-F from IL-17A. Here, we intentionally overlook IL-17A, and we focus instead on the role of the other cytokines of the IL-17 family in the interplay between microbiota and epithelial cells that may contribute to cancer pathogenesis and immune surveillance. We also underscore differences and similarities between IL-17A and IL-17B-to-F in the microbiota-immunity-cancer axis, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in diseases.
Assuntos
Microbioma Gastrointestinal/imunologia , Interleucina-17/metabolismo , Neoplasias/imunologia , Neoplasias/microbiologia , Células Th17/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Células Epiteliais/imunologia , Humanos , Interleucina-17/antagonistas & inibidores , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Receptores de Interleucina-17/metabolismoRESUMO
Dry eye syndrome is a common disease associated to eyes inflammation, irritation and tear film instability. The enzymatic complex of xanthine oxidoreductase (XOR) is involved in the generation of reactive oxygen species (ROS) and uric acid that, in the end, can cause reperfusion injuries, irritation and pathological conditions. Furthermore, in the eye, it has been proposed that oxygen free radicals might play a significant role in retinal ischemic damage. A new artificial drop formulation based on arabinogalactan and hyaluronic acid has been proposed in this article. The uric acid and the ROS formation have been monitored. The effect of the arabinogalactan, the hyaluronic acid and their mixture has been studied. The arabinogalactan entails a uric acid and ROS reduction of 27% and 38% respectively; no significant reduction of uric acid or ROS has been observed after the addition of hyaluronic acid alone. Notably the combination of arabinogalactan and hyaluronic acid involves the reduction of uric acid and ROS equal to 38% and 62%, namely. This study demonstrates that this artificial drop formulation can markedly reduce the uric acid and ROS formation in vitro; thus, the use of this formulation may contribute in the resolution of the dry eye syndrome.
Assuntos
Galactanos/farmacologia , Ácido Hialurônico/farmacologia , Inflamação/tratamento farmacológico , Viscossuplementos/farmacologia , Xantina Desidrogenase/metabolismo , Sinergismo Farmacológico , Inflamação/metabolismo , Soluções Oftálmicas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/metabolismoRESUMO
Immunotherapy has become the standard-of-care in many solid tumors. Despite the significant recent achievements in the diagnosis and treatment of cancer, several issues related to patients' selection for immunotherapy remain unsolved. Multiple lines of evidence suggest that, in this setting, the vision of a single biomarker is somewhat naïve and imprecise, given that immunotherapy does not follow the rules that we have experienced in the past for targeted therapies. On the other hand, additional immune-related biomarkers that are reliable in real-life clinical practice remain to be identified. Recently, the immune-checkpoint blockade has been approved in the US irrespective of the tumor site of origin. Further histology-agnostic approvals, coupled with with tumor-specific companion diagnostics and guidelines, are expected in this field. In addition, immune-related biomarkers can also have a significant prognostic value. In this review, we provide an overview of the role of these biomarkers and their characterization in the management of lung cancer, melanoma, colorectal cancer, gastric cancer, head and neck cancer, renal cell carcinoma, urothelial cancers, and breast cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Neoplasias/metabolismo , Neoplasias/terapia , Antígeno B7-H1/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Antígeno CTLA-4/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/terapia , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/metabolismo , Neoplasias Renais/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/terapia , Neoplasias/diagnóstico , PrognósticoRESUMO
T-cell-based immunotherapy strategies have profoundly improved the clinical management of several solid tumors and hematological malignancies. A recently developed and promising immunotherapy approach is to redirect polyclonal MHC-unrestricted T lymphocytes toward cancer cells by bispecific antibodies (bsAbs) that engage the CD3 complex and a tumor-associated antigen (TAA). The TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) is an attractive immunotherapy target, frequently expressed by neoplastic cells, that we decided to exploit as a TAA. We found that a TRAIL-R2xCD3 bsAb efficiently activates T cells and specifically redirect their cytotoxicity against cancer cells of different origins in vitro, thereby demonstrating its potential as a pan-carcinoma reagent. Moreover, to mimic in vivo conditions, we assessed its ability to retarget T-cell activity in an ex vivo model of ovarian cancer patients' ascitic fluids containing both effector and target cells-albeit with a suboptimal effector-to-target ratio-with remarkable results.
Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias/imunologia , Complexo CD3/imunologia , Neoplasias/terapia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Ativação Linfocitária/imunologia , Masculino , Neoplasias/imunologia , Linfócitos T/imunologiaRESUMO
Immunotherapy, and in particular immune-checkpoints blockade therapy (ICB), represents a new pillar in cancer therapy. Antibodies targeting Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) and Programmed Death 1 (PD-1)/Programmed Death Ligand-1 (PD-L1) demonstrated a relevant clinical value in a large number of solid tumors, leading to an improvement of progression free survival and overall survival in comparison to standard chemotherapy. However, across different solid malignancies, the immune-checkpoints inhibitors efficacy is limited to a relative small number of patients and, for this reason, the identification of positive or negative predictive biomarkers represents an urgent need. Despite the expression of PD-L1 was largely investigated in various malignancies, (i.e., melanoma, head and neck malignancies, urothelial and renal carcinoma, metastatic colorectal cancer, and pancreatic cancer) as a biomarker for ICB treatment-patients selection, it showed an important, but still imperfect, role as positive predictor of response only in nonsmall cell lung cancer (NSCLC). Importantly, other tumor and/or microenvironments related characteristics are currently under clinical evaluation, in combination or in substitution of PD-L1 expression. In particular, tumor-infiltrating immune cells, gene expression analysis, mismatch- repair deficiency, and tumor mutational landscape may play a central role in predicting clinical benefits of CTLA-4 and/or PD-1/PD-L1 checkpoint inhibitors. In this review, we will focus on the clinical evaluation of emerging biomarkers and how these may improve the naïve vision of a single- feature patients-based selection.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Antígeno B7-H1/metabolismo , Neoplasias da Mama , Antígeno CTLA-4/metabolismo , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias de Cabeça e Pescoço , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Melanoma , Neoplasias/genética , Neoplasias Pancreáticas/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismoRESUMO
OBJECTIVES, PURPOSE, OR AIM: This article investigates whether the physical environment in which childbirth occurs impacts the intrapartum intervention rates and how this might happen. The study explores the spatial physical characteristics that can support the design of spaces to promote the health and well-being of women, their supporters, and maternity care professionals. BACKGROUND: Medical interventions during childbirth have consequences for the health of women and babies in the immediate and long term. The increase in interventions is multifactorial and may be influenced by the model of care adopted, the relationships between caregivers and the organizational culture, which is made up of many factors, including the built environment. In the field of birth architecture research, there is a gap in the description of the physical characteristics of birth environments that impact users' health. METHOD: A scoping review on the topic was performed to understand the direct and indirect impacts of the physical environment on birth intervention rates. RESULTS AND DISCUSSION: The findings are organized into three tables reporting the influence that the physical characteristics of a space might have on people's behaviors, experiences, practices and birth health outcomes. Eight building spaces that require further investigation and research were highlighted: unit layout configuration, midwives' hub/desk, social room, birth philosophy vectors, configuration of the birth room, size and shape of the birth room, filter, and sensory elements. CONCLUSIONS: The findings show the importance of considering the physical environment in maternity care and that further interdisciplinary studies focused on architectural design are needed to enrich the knowledge and evidence on this topic and to develop accurate recommendations for designers.
Assuntos
Salas de Parto , Parto Obstétrico/estatística & dados numéricos , Arquitetura Hospitalar , Feminino , Humanos , Cultura Organizacional , Quartos de Pacientes , Gravidez , Resultado da GravidezRESUMO
Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Fatores de Transcrição NFATC/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Proteína Forkhead Box M1/genética , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Humanos , Melanoma/patologia , Camundongos , Camundongos SCID , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genéticaRESUMO
Enteral nutrition (EN) is preferred in order to provide nutrition and reduce catabolism in critically ill patients. Recent studies suggest that the use of EN is successful and complications are rare. However, an underestimated mechanical complication of tube feedings seen in critically ill patients is the coagulation and solidification of the EN causing gastrointestinal obstruction. This report describes two clinical cases (1.23% of all cases seen at our clinic) of obstruction and perforation of the small bowel secondary to the solidification of EN. The understanding and early recognition of this potential complication are essential for the prevention and successful treatment of this condition.
RESUMO
Immunotherapy of non-small cell lung cancer (NSCLC), by immune checkpoint inhibitors, has profoundly improved the clinical management of advanced disease. However, only a fraction of patients respond and no effective predictive factors have been defined. Here, we discuss the prospects for identification of such predictors of response to immunotherapy, by fostering an in-depth analysis of the immune landscape of NSCLC. The emerging picture, from several recent studies, is that the immune contexture of NSCLC lesions is a complex and heterogeneous feature, as documented by analysis for frequency, phenotype and spatial distribution of innate and adaptive immune cells, and by characterization of functional status of inhibitory receptor+ T cells. The complexity of the immune landscape of NSCLC stems from the interaction of several factors, including tumor histology, molecular subtype, main oncogenic drivers, nonsynonymous mutational load, tumor aneuploidy, clonal heterogeneity and tumor evolution, as well as the process of epithelial-mesenchymal transition. All these factors contribute to shape NSCLC immune profiles that have clear prognostic significance. An integrated analysis of the immune and molecular profile of the neoplastic lesions may allow to define the potential predictive role of the immune landscape for response to immunotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Prognóstico , Estudos ProspectivosRESUMO
Clinical efficacy of PD-1/PD-L1 targeting relies upon the reactivation of tumor-specific but functionally impaired PD-1+ T cells present before therapy. Thus, analyzing early-stage primary tumors may reveal the presence of T cells that are not yet functionally impaired. In this study, we report that activated (HLA-DR+) T cells with an effector memory (TEM) profile are enriched in such lesions. Tumor-infiltrating lymphocytes coexpressed PD-1 with the inhibitory receptors TIM-3, CTLA-4, LAG-3, and TIGIT, but also displayed a recently activated, nonexhausted phenotype. We also identified a subset of CD8+PD-1+FOXP3+ T lymphocytes at the earliest phase of functional differentiation after priming, termed "early effector cells" (EEC), which also exhibited an activated nonexhausted phenotype, but was less differentiated and associated with coexpression of multiple inhibitory receptors. In response to autologous tumor, EECs upregulated CD107a, produced IL2 and IFNγ, and were competent for differentiation. The identification of EECs marked by inhibitory receptor expression at tumor sites will enable investigations of early stages of adaptive antitumor immunity, as well as support the rationale for administering immunotherapy in early-stage non-small cell lung cancer. Cancer Res; 77(4); 851-61. ©2016 AACR.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Antígenos CD/análise , Antígeno CTLA-4/análise , Fatores de Transcrição Forkhead/análise , Antígenos HLA-DR/análise , Receptor Celular 2 do Vírus da Hepatite A/análise , Humanos , Interferon gama/biossíntese , Interleucina-2/biossíntese , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/análise , Receptores Imunológicos/análise , Proteína do Gene 3 de Ativação de LinfócitosRESUMO
Intrinsic cross-resistance to inhibition of different signaling pathways may hamper development of combinatorial treatments in melanoma, but the relative frequency of this phenotype and the strategies to overcome this hurdle remain poorly understood. Among 49 BRAF-mutant melanoma cell lines from patients not previously treated with target therapy, 21 (42.9%) showed strong primary resistance (IC50 > 1 µM) to a BRAFV600E inhibitor. Most of the BRAF-inhibitor-resistant cell lines showed also strong or intermediate cross-resistance to MEK1/2- and to PI3K/mTOR-specific inhibitors. Primary cross-resistance was confirmed in an independent set of 23 BRAF-mutant short-term melanoma cell cultures. MEK1/2 and PI3K/mTOR co-targeting was the most effective approach, compared to BRAF and PI3K/mTOR dual blockade, to counteract primary resistance to BRAF inhibition and the cross-resistant phenotype. This was shown by extensive drug interaction analysis, tumor growth inhibition assays in-vivo, p-ERK and p-AKT inhibition, promotion of melanoma apoptosis, apoptosis-related protein modulation, activation of effector caspases and selective modulation of genes involved in melanoma drug resistance and belonging to the ERK/MAPK and PI3K/AKT canonical pathways. Compared to co-targeting of mutant BRAF and PI3K/mTOR, the association of a MEK1/2 and a PI3K/mTOR inhibitor was more effective in the activation of Bax and of caspase-3 and in the induction of caspase-dependent melanoma apoptosis. Furthermore Bax silencing reduced the latter effects. These results suggest that intrinsic resistance to BRAF inhibition is frequently associated with primary cross-resistance to MEK and PI3K/mTOR blockade in BRAF-mutant melanoma and provide pre-clinical evidence for a combinatorial approach to counteract this phenotype.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Melanoma/tratamento farmacológico , Mutação/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Over the last few years, clinical trials with BRAF and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors have shown significant clinical activity in melanoma, but only a fraction of patients respond to these therapies, and development of resistance is frequent. This has prompted a large set of preclinical studies looking at several new combinatorial approaches of pathway- or target-specific inhibitors. At least five main drug association strategies have been verified in vitro and in preclinical models. The most promising include: i) vertical targeting of either MEK or phosphoinositide-3 kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways, or their combined blockade; ii) association of receptor tyrosine kinases (RTKs) inhibitors with other pro-apoptotic strategies; iii) engagement of death receptors in combination with MEK-, mTOR/PI3K-, histone deacetylase (HDAC)-inhibitors, or with anti-apoptotic molecules modulators; iv) strategies aimed at blocking anti-apoptotic proteins belonging to B-cell lymphoma (Bcl-2) or inhibitors of apoptosis (IAP) families associated with MEK/BRAF/p38 inhibition; v) co-inhibition of other molecules important for survival [proteasome, HDAC and Signal transducers and activators of transcription (Stat)3] and the major pathways activated in melanoma; vi) simultaneous targeting of multiple anti-apoptotic molecules. Here we review the anti-melanoma efficacy and mechanism of action of the above-mentioned combinatorial strategies, together with the potential clinical application of the most promising studies that may eventually lead to therapeutic benefit.