Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Neurosci ; 44(40)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358023

RESUMO

The surprising omission or reduction of vital resources (food, fluid, social partners) can induce an aversive emotion known as frustrative nonreward (FNR), which can influence subsequent behavior and physiology. FNR is an integral mediator of irritability/aggression, motivation (substance use disorders, depression), anxiety/fear/threat, learning/conditioning, and social behavior. Despite substantial progress in the study of FNR during the twentieth century, research lagged in the later part of the century and into the early twenty-first century until the National Institute of Mental Health's Research Domain Criteria initiative included FNR and loss as components of the negative valence domain. This led to a renaissance of new research and paradigms relevant to basic and clinical science alike. The COVID-19 pandemic's extensive individual and social restrictions were correlated with increased drug and alcohol use, social conflict, irritability, and suicide, all potential consequences of FNR. This article highlights animal models related to these psychiatric disorders and symptoms and presents recent advances in identifying the brain regions and neurotransmitters implicated.


Assuntos
COVID-19 , Humanos , Animais , COVID-19/psicologia , Transtornos Mentais/psicologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Emoções/fisiologia , Neuroquímica
2.
Psychopharmacology (Berl) ; 241(10): 1983-2001, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38935096

RESUMO

RATIONALE: Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES: We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS: We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS: These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Fissura , Homeostase , Plasticidade Neuronal , Núcleo Accumbens , Ratos Sprague-Dawley , Autoadministração , Tretinoína , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Fissura/efeitos dos fármacos , Fissura/fisiologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Cocaína/administração & dosagem , Cocaína/farmacologia , Homeostase/fisiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores de AMPA/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais , RNA Interferente Pequeno/administração & dosagem , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
3.
Front Neurosci ; 17: 1294567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099204

RESUMO

Cocaine use disorder (CUD) is a prevalent neuropsychiatric disorder with few existing treatments. Thus, there is an unmet need for the identification of new pharmacological targets for CUD. Previous studies using environmental enrichment versus isolation paradigms have found that the latter induces increased cocaine self-administration with correlative increases in the excitability of medium spiny neurons (MSN) of the nucleus accumbens shell (NAcSh). Expanding upon these findings, we sought in the present investigation to elucidate molecular determinants of these phenomena. To that end, we first employed a secondary transcriptomic analysis and found that cocaine self-administration differentially regulates mRNA for fibroblast growth factor 13 (FGF13), which codes for a prominent auxiliary protein of the voltage-gated Na+ (Nav) channel, in the NAcSh of environmentally enriched rats (i.e., resilient behavioral phenotype) compared to environmentally isolated rats (susceptible phenotype). Based upon this finding, we used in vivo genetic silencing to study the causal functional and behavioral consequences of knocking down FGF13 in the NAcSh. Functional studies revealed that knockdown of FGF13 in the NAcSh augmented excitability of MSNs by increasing the activity of Nav channels. These electrophysiological changes were concomitant with a decrease in cocaine demand elasticity (i.e., susceptible phenotype). Taken together, these data support FGF13 as being protective against cocaine self-administration, which positions it well as a pharmacological target for CUD.

4.
J Neuroinflammation ; 20(1): 306, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115011

RESUMO

BACKGROUND: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes. METHODS: The split-luciferase complementation assay (LCA) was used to investigate cell signaling mechanisms downstream of tumor necrosis factor receptor 1 (TNFR1) that could contribute to changes in neuronal excitability in eCM. Whole-cell patch-clamp electrophysiology was performed in brain slices from eCM mice to elucidate consequences of infection on CA1 pyramidal neuron excitability and cell signaling mechanisms that contribute to observed phenotypes. Involvement of identified signaling molecules in mediating behavioral changes and sickness behavior observed in eCM were investigated in vivo using genetic silencing. RESULTS: Exploring signaling mechanisms that underlie TNF-induced effects on neuronal excitability, we found that the complex assembly of fibroblast growth factor 14 (FGF14) and the voltage-gated Na+ (Nav) channel 1.6 (Nav1.6) is increased upon tumor necrosis factor receptor 1 (TNFR1) stimulation via Janus Kinase 2 (JAK2). On account of the dependency of hyperinflammatory experimental cerebral malaria (eCM) on TNF, we performed patch-clamp studies in slices from eCM mice and showed that Plasmodium chabaudi infection augments Nav1.6 channel conductance of CA1 pyramidal neurons through the TNFR1-JAK2-FGF14-Nav1.6 signaling network, which leads to hyperexcitability. Hyperexcitability of CA1 pyramidal neurons caused by infection was mitigated via an anti-TNF antibody and genetic silencing of FGF14 in CA1. Furthermore, knockdown of FGF14 in CA1 reduced sickness behavior caused by infection. CONCLUSIONS: FGF14 may represent a therapeutic target for mitigating consequences of TNF-mediated neuroinflammation.


Assuntos
Comportamento de Doença , Malária Cerebral , Camundongos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Transdução de Sinais
5.
PLoS One ; 18(12): e0296090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127939

RESUMO

In humans, frustrating experiences are known to trigger relapse events and individuals with higher frustration intolerance show increased risk of developing substance use disorders (SUDs). Despite this clear relationship, frustration-related behavior is seldom studied concurrently with self-administration behavior in rodent models. A major obstacle has been the lack of robust, quantitative assays of frustration-related operant behavior thus far. In previous work, we identified increased bar press (BP) durations in response to frustrating conditions in rats self-administering natural or drug rewards. Here, to propose BP durations as a measure of frustration-related behavior, we conducted an operant successive negative contrast (oSNC) study and found that increases in BP durations are observed in the absence of increased effort, providing evidence that this is a psychological phenomenon. Moreover, we assess the viability of widespread use of BP duration measurements as a behavioral tool by quantifying performance as it pertains to sensitivity, robustness, replicability, and sex differences. We conclude that increases in BP durations are a highly sensitive psychological response to frustrating conditions and that this measure is robust, replicable, and applicable to both sexes.


Assuntos
Frustração , Motivação , Humanos , Ratos , Feminino , Masculino , Animais , Condicionamento Operante/fisiologia , Recompensa
6.
Artigo em Inglês | MEDLINE | ID: mdl-37419835

RESUMO

School environmental conditions have immediate and long-term effects on student health and learning. Relying on disconnected, inconsistent, voluntary, or unenforced environmental standards has not resulted in sufficient protection of students from toxic insults. Furthermore, the United States public school system was not prepared to navigate a potentially deadly infectious disease like COVID-19. Although Department of Education agencies have policies to establish clean and safe learning spaces, deficiencies are evident. This article highlights common environmental challenges in schools and opportunities for improvement. Voluntary adoption of rigorous environmental policies by grassroots efforts alone is unlikely to occur in all school systems. In the absence of a legally enforced requirement, the dedication of sufficient resources to update infrastructure and build the environmental health workforce capacity is equally unlikely to occur. Environmental health standards in schools should not be voluntary. Science-based standards should be comprehensive, and part of an actionable, integrated strategy that includes preventive measures and addresses environmental health issues sustainably. Establishing an Integrated Environmental Management approach for schools will require a coordinated capacity-building effort, community-based implementation efforts, and enforcement of minimal standards. Schools will need ongoing technical support and training for staff, faculty, and teachers sufficient to enable them to assume greater oversight and responsibility for environmental management of their schools. Ideally, a holistic approach will include all environmental health components, including IAQ, IPM, green cleaning, pesticide and chemical safety, food safety, fire prevention, building legacy pollutant management, and drinking water quality. Thus, creating a comprehensive management system with continuous monitoring and maintenance. Clinicians who care for children can serve as advocates for children's health beyond their clinic walls by advising parents and guardians to be aware of school conditions and management practices. Medical professionals have always been valued and influential members of communities and school boards. In these roles they can greatly assist in identifying and providing solutions to reduce environmental hazards in schools.


Assuntos
COVID-19 , Criança , Humanos , Estados Unidos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Instituições Acadêmicas , Saúde Ambiental , Pais , Serviços de Saúde Escolar
7.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34607807

RESUMO

Frustrative nonreward (FN) is a construct in the Negative Valence Systems domain of the Research Domain Criteria (RDoC) from the National Institute of Mental Health. An organism's response to frustrating situations (e.g., inability to obtain an expected reward) has broad implications for a variety of neuropsychiatric conditions, including substance use disorders. The current project developed a first of its kind rat operant behavioral model of FN based loosely on the human Point Subtraction Aggression Paradigm (PSAP). The current study shows that individual differences in FN for sucrose pellets are consistent across sessions at baseline and that the task is sensitive to reward size in male rats. More importantly, high FN behavior for sucrose predicts early "breaking" for intravenous fentanyl self-administration under a progressive ratio (PR) schedule. These results solidify frustration/ FN as an important factor for substance use disorders in addition to craving, impulsivity, and habit.


Assuntos
Frustração , Motivação , Animais , Fentanila , Individualidade , Masculino , Ratos , Sacarose
8.
Psychopharmacology (Berl) ; 238(4): 959-968, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33420805

RESUMO

RATIONALE: Currently there is little research into the role of frustration in substance use disorders despite research showing that frustration tolerance in humans is associated with a lower likelihood of developing substance use problems, better outcomes in recovery, and fewer relapses. OBJECTIVE: In order to address this need, our studies use a rat model to focus on frustration-related behavior in natural reward and addiction-related behavioral procedures. Frustration is defined as when a subject is unable to achieve a reinforcer, receives less of a reinforcer than anticipated, or has to work harder to achieve a reinforcer. RESULTS: In these studies, bar-press durations increase when rats are in a state of frustration during self-administration of sucrose, fentanyl, or cocaine. CONCLUSIONS: These data also show that average bar-press durations do not correlate with the number of bar presses, meaning that press duration is an independent measurement that represents a behavioral construct distinct from craving, which is typically measured with number of bar presses. Essentially, these results support that bar press durations can be used as a real-time measure of frustration as a 4th major facet of addiction-related behavior, adding to craving, impulsivity, and habit.


Assuntos
Comportamento Aditivo , Cocaína/administração & dosagem , Reforço Psicológico , Sacarose/administração & dosagem , Animais , Condicionamento Operante , Fissura , Frustração , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração
9.
Neuropharmacology ; 183: 108398, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181146

RESUMO

Substance use disorders for cocaine are major public health concerns with few effective treatment options. Therefore, identification of novel pharmacotherapeutic targets is critical for future therapeutic development. Evolution has ensured that genes are expressed largely only where they are needed. Therefore, examining the gene expression landscape of the nucleus accumbens shell (NAcSh), a brain region important for reward related behaviors, may lead to the identification of novel targets for cocaine use disorder. In this study, we conducted a novel two-step topographic transcriptomic analysis using five seed transcripts with enhanced expression in the NAcSh to identify transcripts with similarly enhanced expression utilizing the correlation feature to search the more than 20,000 in situ hybridization experiments of the Allen Mouse Brain Atlas. Transcripts that correlated with at least three seed transcripts were analyzed with Ingenuity Pathway Analysis (IPA). We identified 7-fold more NAcSh-enhanced transcripts than our previous analysis using single voxels in the NAcSh as the seed. Analysis of the resulting transcripts with IPA identified many previously identified signaling pathways such as retinoic acid signaling as well as novel pathways. Manipulation of the retinoic acid pathway specifically in the NAcSh of male rats via viral vector-mediated RNA interference targeting fatty acid binding protein 5 (FABP5) decreased cocaine self-administration and modulates excitability of medium spiny neurons in the NAcSh. These results not only validate the prospective strategy of conducting a topographic transcriptomic analysis, but also further validate retinoic acid signaling as a promising pathway for pharmacotherapeutic development against cocaine use disorder.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Proteínas do Olho/fisiologia , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/fisiologia , Núcleo Accumbens/metabolismo , Transcriptoma , Potenciais de Ação/efeitos dos fármacos , Animais , Cocaína/farmacologia , Expressão Gênica , Masculino , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração , Tretinoína/metabolismo
10.
Neurosci Biobehav Rev ; 116: 89-98, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32534899

RESUMO

Although developed from a common antecedent, conditioned place preference (CPP) and intravenous drug self-administration (SA) represent different behavioral paradigms, each with strong face validity. The field has treated results from these studies largely interchangeably; however, there is considerable evidence of opposite modulation of CPP vs. SA. This review outlines four manipulations that differentially affect CPP and SA based on alterations of motivation. These examples are contrasted with one example of differential CPP and SA results that can be explained by simple parallel shifts in dose-response functions. The final two examples have yet to be classified as motivation-based or parallel shifts. Important aspects, including motivation, volitional control of drug administration, reward, and the role of cues are discussed. One major conclusion of this paper is that explanations for apparent discrepancies between CPP and SA require full dose effect functions and assessment of PR breakpoints. Overall, this manuscript offers a more nuanced insight into how CPP and SA can be used to study different aspects of substance use disorders.


Assuntos
Motivação , Preparações Farmacêuticas , Animais , Condicionamento Clássico , Recompensa , Roedores , Autoadministração
11.
Proc Natl Acad Sci U S A ; 117(14): 8143-8153, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209671

RESUMO

Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that glycogen-synthase kinase 3ß (GSK3ß) plays a key role in memory formation, yet its role in mood regulation remains controversial. Here, we investigated whether GSK3ß activity in the nucleus accumbens (NAc) is associated with depression-like behaviors and synaptic plasticity. We performed whole-cell patch-clamp recordings of medium spiny neurons (MSNs) in the NAc and determined the role of GSK3ß in spike timing-dependent long-term potentiation (tLTP) in the chronic unpredictable mild stress (CUMS) mouse model of depression. To assess the specific role of GSK3ß in tLTP, we used in vivo genetic silencing by an adeno-associated viral vector (AAV2) short hairpin RNA against GSK3ß. In addition, we examined the role of the voltage-gated potassium Kv4.2 subunit, a molecular determinant of A-type K+ currents, as a potential downstream target of GSK3ß. We found increased levels of active GSK3ß and augmented tLTP in CUMS mice, a phenotype that was prevented by selective GSK3ß knockdown. Furthermore, knockdown of GSK3ß in the NAc ameliorated depressive-like behavior in CUMS mice. Electrophysiological, immunohistochemical, biochemical, and pharmacological experiments revealed that inhibition of the Kv4.2 channel through direct phosphorylation at Ser-616 mediated the GSK3ß-dependent tLTP changes in CUMS mice. Our results identify GSK3ß regulation of Kv4.2 channels as a molecular mechanism of MSN maladaptive plasticity underlying depression-like behaviors and suggest that the GSK3ß-Kv4.2 axis may be an attractive therapeutic target for MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Plasticidade Neuronal , Núcleo Accumbens/patologia , Canais de Potássio Shal/metabolismo , Potenciais de Ação , Animais , Comportamento Animal , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/psicologia , Modelos Animais de Doenças , Masculino , Camundongos , Neurônios/patologia , Núcleo Accumbens/citologia , Técnicas de Patch-Clamp , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Fatores de Tempo
12.
Int J Sport Nutr Exerc Metab ; 30(1): 54-61, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715584

RESUMO

During short-term recovery, postexercise glucose-fructose coingestion can accelerate total glycogen repletion and augment recovery of running capacity. It is unknown if this advantage translates to cycling, or to a longer (e.g., overnight) recovery. Using two experiments, the present research investigated if postexercise glucose-fructose coingestion augments exercise capacity following 4-hr (short experiment; n = 8) and 15-hr (overnight experiment; n = 8) recoveries from exhaustive exercise in trained cyclists, compared with isocaloric glucose alone. In each experiment, a glycogen depleting exercise protocol was followed by a 4-hr recovery, with ingestion of 1.5 or 1.2 g·kg-1·hr-1 carbohydrate in the short experiment (double blind) and the overnight experiment (single blind), respectively. Treatments were provided in a randomized order using a crossover design. Four or fifteen hours after the glycogen depletion protocol, participants cycled to exhaustion at 70% Wmax or 65% Wmax in the short experiment and the overnight experiment, respectively. In both experiments there was no difference in substrate oxidation or blood glucose and lactate concentrations between treatments during the exercise capacity test (trial effect, p > .05). Nevertheless, cycling capacity was greater in glucose + fructose versus glucose only in the short experiment (28.0 ± 8.4 vs. 22.8 ± 7.3 min, d = 0.65, p = .039) and the overnight experiment (35.9 ± 10.7 vs. 30.6 ± 9.2 min, d = 0.53, p = .026). This is the first study to demonstrate that postexercise glucose-fructose coingestion enhances cycling capacity following short-term (4 hr) and overnight (15 hr) recovery durations. Therefore, if multistage endurance athletes are ingesting glucose for rapid postexercise recovery then fructose containing carbohydrates may be advisable.


Assuntos
Bebidas , Ciclismo/fisiologia , Frutose/administração & dosagem , Glucose/administração & dosagem , Resistência Física/fisiologia , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Frutose/sangue , Glicogênio/metabolismo , Humanos , Ácido Láctico/sangue , Fígado/metabolismo , Masculino , Oxirredução , Método Simples-Cego , Fatores de Tempo , Adulto Jovem
13.
PLoS One ; 14(10): e0222818, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647818

RESUMO

Depression is a common psychiatric disorder that has been poorly understood. Consequently, current antidepressant agents have clinical limitations. Until today, most have exhibited the slow onset of therapeutic action and, more importantly, their effect on remission has been minimal. Thus, the need to find new forms of therapeutic intervention is urgent. The inflammation hypothesis of depression is widely acknowledged and is one that theories the relationship between the function of the immune system and its contribution to the neurobiology of depression. In this research, we utilized an environmental isolation (EI) approach as a valid animal model of depression, employing biochemical, molecular, and behavioral studies. The aim was to investigate the anti-inflammatory effect of etanercept, a tumor necrosis factor-α inhibitor on a toll-like receptor 7 (TLR 7) signaling pathway in a depressive rat model, and compare these actions to fluoxetine, a standard antidepressant agent. The behavioral analysis indicates that depression-related symptoms are reduced after acute administration of fluoxetine and, to a lesser extent, etanercept, and are prevented by enriched environment (EE) housing conditions. Experimental studies were conducted by evaluating immobility time in the force swim test and pleasant feeling in the sucrose preference test. The mRNA expression of the TLR 7 pathway in the hippocampus showed that TLR 7, MYD88, and TRAF6 were elevated in isolated rats compared to the standard group, and that acute treatment with an antidepressant and anti-inflammatory drugs reversed these effects. This research indicates that stressful events have an impact on behavioral well-being, TLR7 gene expression, and the TLR7 pathway. We also found that peripheral administration of etanercept reduces depressive-like behaviour in isolated rats: this could be due to the indirect modulation of the TLR7 pathway and other TLRs in the brain. Furthermore, fluoxetine treatment reversed depressive-like behaviour and molecularly modulated the expression of TLR7, suggesting that fluoxetine exerts antidepressant effects partially by modulating the TLR7 signaling pathway.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Receptor 7 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Animais , Antidepressivos/farmacologia , Transtorno Depressivo/genética , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Fator 6 Associado a Receptor de TNF/genética
14.
Behav Brain Res ; 376: 112177, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31449909

RESUMO

Novel targets for depression and anxiety disorders are necessary for the development of more effective pharmacotherapeutics. Our previous study found that the retinoic acid (RA) signaling pathway is the signaling pathway most enhanced in the nucleus accumbens (NAc) shell, a region important for depression, anxiety, and addiction. Genetic manipulations of RA signaling in the NAc affecting addiction-related behavior prompted our study of the role of retinoic acid signaling in depression-related and anxiety-related behavior using in vivo RNA interference. Knockdown of the retinoic acid degradation enzyme cytochrome p450 family 26 subfamily b member 1 (Cyp26b1) in the nucleus accumbens shell increased depression-related behavior while decreasing anxiety-like behavior. Knockdown of the retinoic acid binding protein, cellular RA binding protein 2 (Crabp2), also increased depression-related behavior. Knockdown of another RA binding partner fatty acid binding protein 5 (Fabp5), did not alter these behaviors. These results further support the contention that RA signaling in the NAc shell can affect emotional behavior and that targeting some components of this pathway could be a promising avenue for developing novel treatments for depression and anxiety.


Assuntos
Comportamento Animal/fisiologia , Emoções/fisiologia , Núcleo Accumbens/metabolismo , Tretinoína/metabolismo , Animais , Ansiedade/metabolismo , Depressão/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais
15.
Neuropsychopharmacology ; 43(13): 2521-2531, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30188517

RESUMO

Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/enzimologia , Alcoolismo/genética , Glicogênio Sintase Quinase 3 beta/biossíntese , Glicogênio Sintase Quinase 3 beta/genética , Abstinência de Álcool/psicologia , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Fatores de Risco , Autoadministração , Especificidade da Espécie , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico
16.
Cell Rep ; 23(2): 555-567, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642012

RESUMO

Resilience and vulnerability to neuropsychiatric disorders are linked to molecular changes underlying excitability that are still poorly understood. Here, we identify glycogen-synthase kinase 3ß (GSK3ß) and voltage-gated Na+ channel Nav1.6 as regulators of neuroplasticity induced by environmentally enriched (EC) or isolated (IC) conditions-models for resilience and vulnerability. Transcriptomic studies in the nucleus accumbens from EC and IC rats predicted low levels of GSK3ß and SCN8A mRNA as a protective phenotype associated with reduced excitability in medium spiny neurons (MSNs). In vivo genetic manipulations demonstrate that GSK3ß and Nav1.6 are molecular determinants of MSN excitability and that silencing of GSK3ß prevents maladaptive plasticity of IC MSNs. In vitro studies reveal direct interaction of GSK3ß with Nav1.6 and phosphorylation at Nav1.6T1936 by GSK3ß. A GSK3ß-Nav1.6T1936 competing peptide reduces MSNs excitability in IC, but not EC rats. These results identify GSK3ß regulation of Nav1.6 as a biosignature of MSNs maladaptive plasticity.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Condicionamento Físico Animal , Isolamento Social , Animais , Potenciais Evocados , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/química , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Técnicas de Patch-Clamp , Fosfopeptídeos/análise , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transcriptoma
17.
Neuropharmacology ; 117: 49-60, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126496

RESUMO

Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types.


Assuntos
Ansiedade/genética , Comportamento Aditivo/genética , Comportamento Animal/fisiologia , Depressão/genética , Glicogênio Sintase Quinase 3 beta/fisiologia , Interneurônios/fisiologia , Núcleo Accumbens/fisiologia , Potenciais de Ação/fisiologia , Animais , Cocaína/farmacologia , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Ratos , Autoadministração
18.
Neurotoxicology ; 60: 150-160, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28007400

RESUMO

BACKGROUND: Pyrethroid insecticides are the most popular class of insecticides in the world, despite their near-ubiquity, their effects of delaying the onset of inactivation of voltage-gated sodium (Nav) channels have not been well-evaluated in all the mammalian Nav isoforms. OBJECTIVE: Here we compare the well-studied Nav1.6 isoforms to the less-understood Nav1.1 in their responses to acute deltamethrin exposure. METHODS: We used patch-clamp electrophysiology to record sodium currents encoded by either Nav1.1 or Nav1.6 channels stably expressed in HEK293 cells. Protocols evaluating both resting and use-dependent modification were employed. RESULTS: We found that exposure of both isoforms to 10µM deltamethrin significantly potentiated persistent and tail current densities without affecting peak transient current densities, and only Nav1.1 maintained these significant effects at 1µM deltamethrin. Window currents increased for both as well, and while only Nav1.6 displayed changes in activation slope and V1/2 of steady-state inactivation for peak currents, V1/2 of persistent current activation was hyperpolarized of ∼10mV by deltamethrin in Nav1.1 cells. Evaluating use-dependence, we found that deltamethrin again potentiated persistent and tail current densities in both isoforms, but only Nav1.6 demonstrated use-dependent enhancement, indicating the primary deltamethrin-induced effects on Nav1.1 channels are not use-dependent. CONCLUSION: Collectively, these data provide evidence that Nav1.1 is indeed vulnerable to deltamethrin modification at lower concentrations than Nav1.6, and this effect is primarily mediated during the resting state. GENERAL SIGNIFICANCE: These findings identify Nav1.1 as a novel target of pyrethroid exposure, which has major implications for the etiology of neuropsychiatric disorders associated with loss of Nav1.1-expressing inhibitory neurons.


Assuntos
Inseticidas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Isoformas de Proteínas/fisiologia
19.
J Neurosci ; 37(6): 1378-1393, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28011743

RESUMO

Neuroplasticity in the amygdala drives pain-related behaviors. The central nucleus (CeA) serves major amygdala output functions and can generate emotional-affective behaviors and modulate nocifensive responses. The CeA receives excitatory and inhibitory inputs from the basolateral nucleus (BLA) and serotonin receptor subtype 5-HT2CR in the BLA, but not CeA, has been implicated anxiogenic behaviors and anxiety disorders. Here, we tested the hypothesis that 5-HT2CR in the BLA plays a critical role in CeA plasticity and neuropathic pain behaviors in the rat spinal nerve ligation (SNL) model. Local 5-HT2CR knockdown in the BLA with stereotaxic injection of 5-HT2CR shRNA AAV vector decreased vocalizations and anxiety- and depression-like behaviors and increased sensory thresholds of SNL rats, but had no effect in sham controls. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that 5-HT2CR knockdown blocked the increase in neuronal activity (increased responsiveness, irregular spike firing, and increased burst activity) in SNL rats. At the synaptic level, 5-HT2CR knockdown blocked the increase in excitatory transmission from BLA to CeA recorded in brain slices from SNL rats using whole-cell patch-clamp conditions. Inhibitory transmission was decreased by 5-HT2CR knockdown in control and SNL conditions to a similar degree. The findings can be explained by immunohistochemical data showing increased expression of 5-HT2CR in non-GABAergic BLA cells in SNL rats. The results suggest that increased 5-HT2CR in the BLA contributes to neuropathic-pain-related amygdala plasticity by driving synaptic excitation of CeA neurons. As a rescue strategy, 5-HT2CR knockdown in the BLA inhibits neuropathic-pain-related behaviors.SIGNIFICANCE STATEMENT Neuroplasticity in the amygdala has emerged as an important pain mechanism. This study identifies a novel target and rescue strategy to control abnormally enhanced amygdala activity in an animal model of neuropathic pain. Specifically, an integrative approach of gene transfer, systems and brain slice electrophysiology, behavior, and immunohistochemistry was used to advance the novel concept that serotonin receptor subtype 5-HT2C contributes critically to the imbalance between excitatory and inhibitory drive of amygdala output neurons. Local viral vector-mediated 5-HT2CR knockdown in the amygdala normalizes the imbalance, decreases neuronal activity, and inhibits neuropathic-pain-related behaviors. The study provides valuable insight into serotonin receptor (dys)function in a limbic brain area.


Assuntos
Tonsila do Cerebelo/metabolismo , Técnicas de Silenciamento de Genes , Neuralgia/metabolismo , Plasticidade Neuronal/fisiologia , Medição da Dor/métodos , Receptor 5-HT2C de Serotonina/deficiência , Animais , Técnicas de Silenciamento de Genes/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , Neuralgia/genética , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2C de Serotonina/genética , Vocalização Animal/fisiologia
20.
Front Mol Neurosci ; 9: 119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27899881

RESUMO

There exists much variability in susceptibility/resilience to addiction in humans. The environmental enrichment paradigm is a rat model of resilience to addiction-like behavior, and understanding the molecular mechanisms underlying this protective phenotype may lead to novel targets for pharmacotherapeutics to treat cocaine addiction. We investigated the differential regulation of transcript levels using RNA sequencing of the rat nucleus accumbens after environmental enrichment/isolation and cocaine/saline self-administration. Ingenuity Pathways Analysis and Gene Set Enrichment Analysis of 14,309 transcripts demonstrated that many biofunctions and pathways were differentially regulated. New functional pathways were also identified for cocaine modulation (e.g., Rho GTPase signaling) and environmental enrichment (e.g., signaling of EIF2, mTOR, ephrin). However, one novel pathway stood out above the others, the retinoic acid (RA) signaling pathway. The RA signaling pathway was identified as one likely mediator of the protective enrichment addiction phenotype, an interesting result given that nine RA signaling-related genes are expressed selectively and at high levels in the nucleus accumbens shell (NAcSh). Subsequent knockdown of Cyp26b1 (an RA degradation enzyme) in the NAcSh of rats confirmed this role by increasing cocaine self-administration as well as cocaine seeking. These results provide a comprehensive account of enrichment effects on the transcriptome and identify RA signaling as a contributing factor for cocaine addiction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA