Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Endocrine ; 84(2): 345-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400880

RESUMO

PURPOSE: Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS: Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS: By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS: SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.


Assuntos
Disgenesia Gonadal , Hipopituitarismo , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Disgenesia Gonadal/genética , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Camundongos Knockout , Linhagem , Hormônios Hipofisários/deficiência , Hormônios Hipofisários/genética , Proteínas de Transporte Vesicular/genética
2.
Sci Adv ; 8(21): eabm0972, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613264

RESUMO

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.

3.
Reproduction ; 163(6): 333-340, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315790

RESUMO

Sex determination in mammals is controlled by the dominance of either pro-testis (SRY-SOX9-FGF9) or pro-ovary (RSPO1-WNT4-FOXL2) genetic pathways during early gonad development in XY and XX embryos, respectively. We have previously shown that early, robust expression of mouse Sry is dependent on the nuclear protein GADD45g. In the absence of GADD45g, XY gonadal sex reversal occurs, associated with a major reduction of Sry levels at 11.5 dpc. Here, we probe the relationship between Gadd45g and Sry further, using gain- and loss-of-function genetics. First, we show that transgenic Gadd45g overexpression can elevate Sry expression levels at 11.5 dpc in the B6.YPOS model of sex reversal, resulting in phenotypic rescue. We then show that the zygosity of pro-ovarian Rspo1 is critical for the degree of gonadal sex reversal observed in both B6.YPOS and Gadd45g-deficient XY gonads, in contrast to that of Foxl2. Phenotypic rescue of sex reversal is observed in XY gonads lacking both Gadd45g and Rspo1, but this is not associated with rescue of Sry expression levels at 11.5 dpc. Instead, Sox9 levels are rescued by around 12.5 dpc. We conclude that Gadd45g is absolutely required for timely expression of Sry in XY gonads, independently of RSPO1-mediated WNT signalling, and discuss these data in light of our understanding of antagonistic interactions between the pro-testis and pro-ovary pathways.


Assuntos
Gônadas , Fatores de Transcrição SOX9 , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Masculino , Mamíferos/genética , Camundongos , Ovário/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Processos de Determinação Sexual , Diferenciação Sexual , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Testículo/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Via de Sinalização Wnt
4.
Eur J Endocrinol ; 186(5): K25-K31, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35235537

RESUMO

Background: The human INHA gene encodes the inhibin subunit alpha protein, which is common to both inhibin A and B. The functional importance of inhibins in male sex development, sexual function, and reproduction remain largely unknown. Objective: We report for the first time two male siblings with homozygous INHAmutations. Methods: The medical files were examined for clinical, biochemical, and imaging data. Genetic analysis was performed using next-generation and Sanger sequencing methods. Results: Two brothers complained of gynecomastia, testicular pain, and had a history of hypospadias. Biochemistry revealed low serum testosterone, high gonadotropin and anti-Mullerian hormone, and very low/undetectable inhibin concentrations, where available. Both patients had azoospermia in the spermiogram. We have identified a homozygous 2 bp deletion (c.208_209delAG, R70Gfs*3) variant, which leads to a truncated INHA protein in both patients, and confirmed heterozygosity in the parents. The external genital development, pubertal onset and progression, reproductive functions, serum gonadotropins, and sex hormones of mother and father, who were heterozygous carriers of the identified mutation, were normal. Conclusion: Homozygosity for INHA mutations causes decreased prenatal and postnatal testosterone production and infertility in males, while the heterozygous female and male carriers of INHA mutations do not have any abnormality in sex development and reproduction.


Assuntos
Hipogonadismo , Hipospadia , Inibinas/genética , Feminino , Humanos , Hipogonadismo/metabolismo , Hipospadia/genética , Hipospadia/metabolismo , Masculino , Mutação/genética , Irmãos , Testículo/metabolismo
5.
Eur J Endocrinol ; 186(1): 65-72, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714774

RESUMO

CONTEXT: Homozygous and heterozygous variants in PPP2R3C are associated with syndromic 46,XY complete gonadal dysgenesis (Myo-Ectodermo-Gonadal Dysgenesis (MEGD) syndrome), and impaired spermatogenesis, respectively. This study expands the role of PPP2R3C in the aetiology of gonadal dysgenesis (GD). METHOD: We sequenced the PPP2R3C gene in four new patients from three unrelated families. The clinical, laboratory, and molecular characteristics were investigated. We have also determined the requirement for Ppp2r3c in mice (C57BL6/N) using CRISPR/Cas9 genome editing. RESULTS: A homozygous c.578T>C (p.L193S) PPP2R3C variant was identified in one 46,XX girl with primary gonadal insufficiency, two girls with 46,XY complete GD, and one undervirilised boy with 46,XY partial GD. The patients with complete GD had low gonadal and adrenal androgens, low anti-Müllerian hormone, and high follicle-stimulating hormone and luteinizing hormone concentrations. All patients manifested characteristic features of MEGD syndrome. Heterozygous Ppp2r3c knockout mice appeared overtly normal and fertile. Inspection of homozygous embryos at 14.5, 9.5, and 8.5 days post coitum(dpc) revealed evidence of dead embryos. We conclude that loss of function of Ppp2r3c is not compatible with viability in mice and results in embryonic death from 7.5 dpc or earlier. CONCLUSION: Our data indicate the essential roles for PPP2R3C in mouse and human development. Germline homozygous variants in human PPP2R3C are associated with distinctive syndromic GD of varying severity in both 46,XY and 46,XX individuals.


Assuntos
Disgenesia Gonadal 46 XX/genética , Disgenesia Gonadal 46 XY/genética , Proteína Fosfatase 2/genética , Substituição de Aminoácidos , Animais , Criança , Consanguinidade , Embrião de Mamíferos , Feminino , Disgenesia Gonadal 46 XX/patologia , Disgenesia Gonadal 46 XY/patologia , Homozigoto , Humanos , Leucina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Linhagem , Gravidez , Serina/genética
6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301885

RESUMO

Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic ß-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in ß-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of ß-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/ß-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that ß-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.


Assuntos
Diferenciação Celular , Células Germinativas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Feminino , Células Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , Proteínas Wnt/genética , beta Catenina/genética
7.
Prog Mol Biol Transl Sci ; 182: 1-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34175039

RESUMO

Genome editing, particularly the use of CRISPR-Cas9-based methodologies, is revolutionizing biology through its impacts on research and the translation of these into applications in biomedicine. Somatic genome editing aimed at treating individuals with disease raises some significant ethical issues, but proposed heritable interventions, through the use of genome editing in gametes or embryos, raise a number of distinct social, ethical and political issues. This review will consider some proposed uses of heritable human genome editing (HHGE) and several of the objections to these that have been raised. Making sense of such proposed uses requires viewing HHGE as an assisted reproductive technology (ART) that, like preimplantation genetic testing (PGT) and mitochondrial replacement techniques (MRT), aims to prevent disease transmission during sexual reproduction, rather than acting as a therapy for an existing individual. Applications beyond the paradigm of disease prevention raise even more difficult scientific and ethical questions. Here, I will discuss various themes that are prominent in discussions of the science and ethics of HHGE, including impacts on human dignity and society, the language of HHGE used for public dialogue and the governance of HHGE.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Humano/genética , Células Germinativas , Humanos , Técnicas de Reprodução Assistida
8.
Stem Cell Reports ; 16(6): 1398-1408, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048692

RESUMO

The International Society for Stem Cell Research has updated its Guidelines for Stem Cell Research and Clinical Translation in order to address advances in stem cell science and other relevant fields, together with the associated ethical, social, and policy issues that have arisen since the last update in 2016. While growing to encompass the evolving science, clinical applications of stem cells, and the increasingly complex implications of stem cell research for society, the basic principles underlying the Guidelines remain unchanged, and they will continue to serve as the standard for the field and as a resource for scientists, regulators, funders, physicians, and members of the public, including patients. A summary of the key updates and issues is presented here.


Assuntos
Temas Bioéticos/normas , Políticas , Guias de Prática Clínica como Assunto , Sociedades Científicas/normas , Pesquisa com Células-Tronco/ética , Células-Tronco , Humanos , Sociedades Científicas/ética
9.
Reproduction ; 162(1): F69-F78, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33878027

RESUMO

The birth of Dolly the sheep in 1996 elicited a tsunami of commentaries, both in the popular media and academic journals, including responses to the prospect of human reproductive cloning. Much of the anxiety expressed over this imagined consequence of Dolly's genesis revealed fundamental concerns about us losing our commitments to certain ethical goods, such as human dignity, or even 'what it means to be human'. Over the last 25 years, the focus of much of the ethical debate over human biotechnology has slowly shifted towards other genetic technologies that aim to influence inheritance, such as mitochondrial replacement techniques (MRT) and heritable genome editing. Genome editing, in particular, is a technology with multiple fields of application, actual and potential, in research and innovation. This review suggests that many of the fundamental concerns about the possibility of human reproductive cloning that were precipitated by Dolly persist today in the arguments of those who oppose MRT and any use of heritable human genome editing (HHGE). Whilst it is not accepted here that an understanding of human nature and dignity alone can demonstrate the ethical unacceptability of such assisted reproductive technologies, there are themes of justice, which extend into our relationships with animals, that demand continued wide-ranging examination and public dialogue. While Dolly has cast a long shadow over such discussions, this review suggests that the general existential angst over human uses of biotechnology that she came to symbolise is neither compulsory nor a reliable guide for how to think about biotechnologies today.


Assuntos
Animais Geneticamente Modificados/genética , Clonagem de Organismos/veterinária , Edição de Genes , Genoma , Gado/genética , Mitocôndrias/genética , Técnicas de Transferência Nuclear/ética , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Aniversários e Eventos Especiais , Núcleo Celular/genética , Gado/crescimento & desenvolvimento , Técnicas de Transferência Nuclear/veterinária
10.
Genet Med ; 22(1): 150-159, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31337883

RESUMO

PURPOSE: XY individuals with disorders/differences of sex development (DSD) are characterized by reduced androgenization caused, in some children, by gonadal dysgenesis or testis regression during fetal development. The genetic etiology for most patients with 46,XY gonadal dysgenesis and for all patients with testicular regression syndrome (TRS) is unknown. METHODS: We performed exome and/or Sanger sequencing in 145 individuals with 46,XY DSD of unknown etiology including gonadal dysgenesis and TRS. RESULTS: Thirteen children carried heterozygous missense pathogenic variants involving the RNA helicase DHX37, which is essential for ribosome biogenesis. Enrichment of rare/novel DHX37 missense variants in 46,XY DSD is highly significant compared with controls (P value = 5.8 × 10-10). Five variants are de novo (P value = 1.5 × 10-5). Twelve variants are clustered in two highly conserved functional domains and were specifically associated with gonadal dysgenesis and TRS. Consistent with a role in early testis development, DHX37 is expressed specifically in somatic cells of the developing human and mouse testis. CONCLUSION: DHX37 pathogenic variants are a new cause of an autosomal dominant form of 46,XY DSD, including gonadal dysgenesis and TRS, showing that these conditions are part of a clinical spectrum. This raises the possibility that some forms of DSD may be a ribosomopathy.


Assuntos
Disgenesia Gonadal 46 XY/genética , Mutação de Sentido Incorreto , RNA Helicases/genética , Análise de Sequência de DNA/métodos , Testículo/crescimento & desenvolvimento , Adolescente , Animais , Pré-Escolar , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Recém-Nascido , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Taxa de Mutação , Domínios Proteicos , RNA Helicases/química , Testículo/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA