Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Neurosci Biobehav Rev ; 153: 105382, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673282

RESUMO

Coordinated group displays featuring precise entrainment of rhythmic behavior between neighbors occur not only in human music, dance and drill, but in the acoustic or optical signaling of a number of species of arthropods and anurans. In this review we describe the mechanisms of phase resetting and phase and tempo adjustments that allow the periodic output of signaling individuals to be aligned in synchronized rhythmic group displays. These mechanisms are well described in some of the synchronizing arthropod species, in which conspecific signals reset an individual's endogenous output oscillators in such a way that the joint rhythmic signals are locked in phase. Some of these species are capable of mutually adjusting both the phase and tempo of their rhythmic signaling, thereby achieving what is called perfect synchrony, a capacity which otherwise is found only in humans. We discuss this disjoint phylogenetic distribution of inter-individual rhythmic entrainment in the context of the functions such entrainment might perform in the various species concerned, and the adaptive circumstances in which it might evolve.


Assuntos
Dança , Música , Animais , Humanos , Filogenia , Periodicidade
2.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987221

RESUMO

This work develops a probability-based numerical method for quantifying mechanical properties of non-Gaussian chains subject to uniaxial deformation, with the intention of being able to incorporate polymer-polymer and polymer-filler interactions. The numerical method arises from a probabilistic approach for evaluating the elastic free energy change of chain end-to-end vectors under deformation. The elastic free energy change, force, and stress computed by applying the numerical method to uniaxial deformation of an ensemble of Gaussian chains were in excellent agreement with analytical solutions that were obtained with a Gaussian chain model. Next, the method was applied to configurations of cis- and trans-1,4-polybutadiene chains of various molecular weights that were generated under unperturbed conditions over a range of temperatures with a Rotational Isomeric State (RIS) approach in previous work (Polymer2015, 62, 129-138). Forces and stresses increased with deformation, and further dependences on chain molecular weight and temperature were confirmed. Compression forces normal to the imposed deformation were much larger than tension forces on chains. Smaller molecular weight chains represent the equivalent of a much more tightly cross-linked network, resulting in greater moduli than larger chains. Young's moduli computed from the coarse-grained numerical model were in good agreement with experimental results.

3.
J Phys Chem B ; 126(50): 10697-10711, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36475708

RESUMO

Lipid bilayers express a range of phases from solid-like to gel-like to liquid-like as a function of temperature and lipid surface concentration. The area occupied per lipid head group serves as one useful indicator of the bilayer phase, in conjunction with the two-dimensional radial distribution function (i.e., structure factor) within the bilayer. Typically, the area per head group is determined by dividing the bilayer area equally among all head groups. Such an approach is less satisfactory for a multicomponent set of diverse lipids. In this work, area determination is performed on a lipid-by-lipid basis by attributing to a lipid the volume that surrounds each atom. Voronoi tessellation provides this division of the interfacial region on a per-atom basis. The method is applied to a multicomponent system of water, NaCl, and 19 phospholipid types that was devised recently [Langmuir2022, 38, 9481-9499] as a computational representation of the Gram-positive Staphylococcus aureus phospholipid bilayer. Results demonstrate that lipids and water molecules occupy similar extents of area within the interfacial region; ascribing area only to head groups implicitly incorporates assumptions about head group hydration. Results further show that lipid tails provide non-negligible contributions to area on the membrane side of the bilayer-water interface. Results for minimum and maximum area of individual lipids reveal that spontaneous fluctuations displace head groups more than 10 Šfrom the interfacial region during an NPT simulation at 310 K, leading to a zero contribution to total area at some times. Total area fluctuations and fluctuations per individual lipid relax with a correlation time of ∼10 ns. The method complements density profile as an approach to quantify the structure and dynamics of computational lipid bilayers.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Bicamadas Lipídicas/química , Simulação por Computador , Temperatura , Água/química , Simulação de Dinâmica Molecular
4.
Commun Biol ; 5(1): 869, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008592

RESUMO

Ambient noise is a major constraint on acoustic communication in both animals and humans. One mechanism to overcome this problem is Spatial Release from Masking (SRM), the ability to distinguish a target sound signal from masking noise when both sources are spatially separated. SRM is well described in humans but has been poorly explored in animals. Although laboratory tests with trained individuals have suggested that SRM may be a widespread ability in vertebrates, it may play a limited role in natural environments. Here we combine field experiments with investigations in captivity to test whether crocodilians experience SRM. We show that 2 species of crocodilians are able to use SRM in their natural habitat and that it quickly becomes effective for small angles between the target signal source and the noise source, becoming maximal when the angle exceeds 15∘. Crocodiles can therefore take advantage of SRM to improve sound scene analysis and the detection of biologically relevant signals.


Assuntos
Jacarés e Crocodilos , Mascaramento Perceptivo , Estimulação Acústica , Acústica , Animais , Humanos , Ruído
5.
Langmuir ; 38(31): 9481-9499, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901279

RESUMO

Studies indicate a crucial cell membrane role in the antibiotic resistance of Staphylococcus aureus. To simulate its membrane structure and dynamics, a complex molecular-scale computational representation of the S. aureus lipid bilayer was developed. Phospholipid types and their amounts were optimized by reverse Monte Carlo to represent characterization data from the literature, leading to 19 different phospholipid types that combine three headgroups [phosphatidylglycerol, lysyl-phosphatidylglycerol (LPG), and cardiolipin] and 10 tails, including iso- and anteiso-branched saturated chains. The averaged lipid bilayer thickness was 36.7 Å, and area per headgroup was 67.8 Å2. Phosphorus and nitrogen density profiles showed that LPG headgroups tended to be bent and oriented more parallel to the bilayer plane. The water density profile showed that small amounts reached the membrane center. Carbon density profiles indicated hydrophobic interactions for all lipids in the middle of the bilayer. Bond vector order parameters along each tail demonstrated different C-H ordering even within distinct lipids of the same type; however, all tails followed similar trends in average order parameter. These complex simulations further revealed bilayer insights beyond those attainable with monodisperse, unbranched lipids. Longer tails often extended into the opposite leaflet. Carbon at and beyond a branch showed significantly decreased ordering compared to carbon in unbranched tails; this feature arose in every branched lipid. Diverse tail lengths distributed these disordered methyl groups throughout the middle third of the bilayer. Distributions in mobility and ordering reveal diverse properties that cannot be obtained with monodisperse lipids.


Assuntos
Bicamadas Lipídicas , Staphylococcus aureus , Carbono , Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfolipídeos
6.
Philos Trans R Soc Lond B Biol Sci ; 376(1835): 20200324, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34420379

RESUMO

This theme issue assembles current studies that ask how and why precise synchronization and related forms of rhythm interaction are expressed in a wide range of behaviour. The studies cover human activity, with an emphasis on music, and social behaviour, reproduction and communication in non-human animals. In most cases, the temporally aligned rhythms have short-from several seconds down to a fraction of a second-periods and are regulated by central nervous system pacemakers, but interactions involving rhythms that are 24 h or longer and originate in biological clocks also occur. Across this spectrum of activities, species and time scales, empirical work and modelling suggest that synchrony arises from a limited number of coupled-oscillator mechanisms with which individuals mutually entrain. Phylogenetic distribution of these common mechanisms points towards convergent evolution. Studies of animal communication indicate that many synchronous interactions between the signals of neighbouring individuals are specifically favoured by selection. However, synchronous displays are often emergent properties of entrainment between signalling individuals, and in some situations, the very signallers who produce a display might not gain any benefit from the collective timing of their production. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.


Assuntos
Comunicação Animal , Encéfalo/fisiologia , Atividades Humanas , Música , Periodicidade , Reprodução , Comportamento Social , Animais , Humanos
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1835): 20200338, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34420386

RESUMO

Animals communicating interactively with conspecifics often time their broadcasts to avoid overlapping interference, to emit leading, as opposed to following, signals or to synchronize their signalling rhythms. Each of these adjustments becomes more difficult as the number of interactants increases beyond a pair. Among acoustic species, insects and anurans generally deal with the problem of group signalling by means of 'selective attention' in which they focus on several close or conspicuous neighbours and ignore the rest. In these animals, where signalling and receiving are often dictated by sex, the process of selective attention in signallers may have a parallel counterpart in receivers, which also focus on close neighbours. In birds and mammals, local groups tend to be extended families or clans, and group signalling may entail complex timing mechanisms that allow for attention to all individuals. In general, the mechanisms that allow animals to communicate in groups appear to be fully interwoven with the basic process of rhythmic signalling. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.


Assuntos
Comunicação Animal , Anuros/fisiologia , Aves/fisiologia , Insetos/fisiologia , Mamíferos/psicologia , Periodicidade , Animais
8.
J Phys Chem B ; 125(3): 703-721, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33464100

RESUMO

Many classical antimicrobial peptides adopt an amphipathic helical structure at a water-membrane interface. Prior studies led to the hypothesis that a hinge near the middle of a helical peptide plays an important role in facilitating peptide-membrane interactions. Here, dynamics and vibrations of a designed hybrid antimicrobial peptide LM7-2 in solution were simulated to investigate its hinge formation. Molecular dynamics simulation results on the basis of the CHARMM36 force field showed that the α-helix LM7-2 bent around two or three residues near the middle of the peptide, stayed in a helix-hinge-helix conformation for a short period of time, and then returned to a helical conformation. High-resolution computational vibrational techniques were applied on the LM7-2 system when it has α-helical and helix-hinge-helix conformations to understand how this structural change affects its inherent vibrations. These studies concentrated on the calculation of frequencies that correspond to backbone amide bands I, II, and III: vibrational modes that are sensitive to changes in the secondary structure of peptides and proteins. To that end, Fourier transforms were applied to thermal fluctuations in C-N-H angles, C-N bond lengths, and C═O bond lengths of each amide group. In addition, instantaneous all-atom normal mode analysis was applied to monitor and detect the characteristic amide bands of each amide group within LM7-2 during the MD simulation. Computational vibrational results indicate that shapes and frequencies of amide bands II and especially III were altered only for amide groups near the hinge. These methods provide high-resolution vibrational information that can complement spectroscopic vibrational studies. They assist in interpreting spectra of similar systems and suggest a marker for the presence of the helix-hinge-helix motif. Moreover, radial distribution functions indicated an increase in the probability of hydrogen bonding between water and a hydrogen atom connected to nitrogen (HN) in such a hinge. The probability of intramolecular hydrogen bond formation between HN and an amide group oxygen atom within LM7-2 was lower around the hinge. No correlation has been found between the presence of a hinge and hydrogen bonds between amide group oxygen atoms and the hydrogen atoms of water molecules. This result suggests a mechanism for hinge formation wherein hydrogen bonds to oxygen atoms of water replace intramolecular hydrogen bonds as the peptide backbone folds.


Assuntos
Simulação de Dinâmica Molecular , Vibração , Ligação de Hidrogênio , Peptídeos , Estrutura Secundária de Proteína
9.
J Diabetes Sci Technol ; 14(2): 271-276, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32116024

RESUMO

BACKGROUND: Continuous glucose monitoring (CGM) offers multiple data features that can be leveraged to assess glucose management. However, how diabetes healthcare professionals (HCPs) actually assess CGM data and the extent to which they agree in assessing glycemic management are not well understood. METHODS: We asked HCPs to assess ten de-identified CGM datasets (each spanning seven days) and rank order each day by relative glycemic management (from "best" to "worst"). We also asked HCPs to endorse features of CGM data that were important in making such assessments. RESULTS: In the study, 57 HCPs (29 endocrinologists; 28 diabetes educators) participated. Hypoglycemia and glycemic variance were endorsed by nearly all HCPs to be important (91% and 88%, respectively). Time in range and daily lows and highs were endorsed more frequently by educators (all Ps < .05). On average, HCPs endorsed 3.7 of eight data features. Overall, HCPs demonstrated agreement in ranking days by relative glycemic control (Kendall's W = .52, P < .001). Rankings were similar between endocrinologists and educators (R2 = .90, Cohen's kappa = .95, mean absolute error = .4 [all Ps < .05]; Mann-Whitney U = 41, P = .53). CONCLUSIONS: Consensus in the endorsement of certain data features and agreement in assessing glycemic management were observed. While some practice-specific differences in feature endorsement were found, no differences between educators and endocrinologists were observed in assessing glycemic management. Overall, HCPs tended to consider CGM data holistically, in alignment with published recommendations, and made converging assessments regardless of practice.


Assuntos
Conjuntos de Dados como Assunto , Controle Glicêmico , Pessoal de Saúde/estatística & dados numéricos , Monitorização Fisiológica/métodos , Prática Profissional/estatística & dados numéricos , Glicemia/análise , Glicemia/metabolismo , Automonitorização da Glicemia/estatística & dados numéricos , Análise de Dados , Conjuntos de Dados como Assunto/estatística & dados numéricos , Atenção à Saúde/organização & administração , Atenção à Saúde/estatística & dados numéricos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Endocrinologistas/estatística & dados numéricos , Controle Glicêmico/métodos , Controle Glicêmico/normas , Controle Glicêmico/estatística & dados numéricos , Educadores em Saúde/estatística & dados numéricos , Humanos , Hipoglicemia/sangue , Hipoglicemia/diagnóstico , Estados Unidos/epidemiologia
10.
Phys Chem Chem Phys ; 21(43): 23943-23965, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31596287

RESUMO

Tryptophan and tyrosine are amino acids that play significant roles in the folding processes of proteins at water-membrane interfaces because of their amphipathic heteroaromatic rings. Employing appropriate heteroaromatic molecular structures is essential for obtaining accurate dynamics and predictive capabilities in molecular simulations of these amino acids. In this study, molecular dynamics simulations that applied the most recent version of the CHARMM36 force field were conducted on aqueous solutions of tryptophan and of tyrosine. Geometric analysis and dynamics quantified how aromatic rings deviated from planar structures and exhibited out-of-plane fluctuations. Radial distribution functions showed possible biological significance because the extent of ring planarity slightly affected local water concentrations near aromatic rings. Instantaneous all-atom normal mode analysis (NMA) and Fourier transformation of time autocorrelation functions of out-of-plane displacements were applied to study out-of-plane vibrations of atoms in these rings. The NMA started with minimum energy configurations and then averaged over fluctuations in aqueous solution. The frequencies and frequency patterns that were obtained for tryptophan and tyrosine with CHARMM36 differed from literature reports of Raman spectra, infrared spectra, and frequencies calculated using quantum mechanics, with some out-of-plane modes found at higher frequencies. Effects of imposing improper torsion potentials and changing torsion angle force constants were investigated for all atoms in the rings of tryptophan and tyrosine. Results show that these coarse force field variations only affect planarity and out-of-plane vibrations of atoms within the rings, and not other vibrations. Although increasing improper torsion force constants reduced deviations from aromatic ring planarity significantly, it increased out-of-plane mode frequencies. Reducing torsion angle force constants (with and without improper torsions) shifted modes to lower frequencies. A combination of decreasing most torsion angle force constants for ring atoms in both amino acids and including improper torsion forces attained frequencies and frequency patterns for out-of-plane normal modes that were more similar to the literature spectra. These force field variations decreased the extents of out-of-plane vibrations within the heteroaromatic rings of tryptophan, especially around the nitrogen atom in the ring, but not within the heteroaromatic ring of tyrosine. Conclusions were unaffected by the peptide endgroup, water, or simulation ensemble.


Assuntos
Triptofano/química , Tirosina/química , Cinética , Simulação de Dinâmica Molecular , Termodinâmica , Água/química
11.
Ann N Y Acad Sci ; 1453(1): 12-21, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515817

RESUMO

The study of human language is progressively moving toward comparative and interactive frameworks, extending the concept of turn-taking to animal communication. While such an endeavor will help us understand the interactive origins of language, any theoretical account for cross-species turn-taking should consider three key points. First, animal turn-taking must incorporate biological studies on animal chorusing, namely how different species coordinate their signals over time. Second, while concepts employed in human communication and turn-taking, such as intentionality, are still debated in animal behavior, lower level mechanisms with clear neurobiological bases can explain much of animal interactive behavior. Third, social behavior, interactivity, and cooperation can be orthogonal, and the alternation of animal signals need not be cooperative. Considering turn-taking a subset of chorusing in the rhythmic dimension may avoid overinterpretation and enhance the comparability of future empirical work.


Assuntos
Comunicação Animal , Evolução Biológica , Comportamento Cooperativo , Idioma , Animais , Humanos , Fala
12.
G3 (Bethesda) ; 9(7): 2349-2361, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31101652

RESUMO

Specific characteristics of the male Achroia grisella acoustic mating signal determine a male's attractiveness toward females. These features are genetically variable in populations, and mapping experiments have been used to identify loci contributing to song variation, and understand the evolutionary forces acting on this important sexual trait. Here we built on this foundation and carried out QTL (Quantitative Trait Locus) mapping using >1,000 recombinant individuals, genotyping this large cohort at thousands of sequence-based markers covering the entire collection of 30 A. grisella chromosomes. This dense marker set, coupled with our development of an annotated, draft genome of A. grisella, allowed us to link >3,000 genome scaffolds, >10,000 predicted genes, and close to 275Mb of genome sequence to chromosomes. Our QTL mapping confirmed a fraction of the QTL identified in a previous study, and additionally revealed novel loci. Collectively, QTL explained only small fractions of the phenotypic variance, suggesting many more causative factors remain below the detection threshold of our study. A surprising, and ultimately challenging feature of our study was the low level of intrachromosomal recombination present in our mapping population. This led to difficulty ordering markers along linkage groups, necessitating a chromosome-by-chromosome mapping approach, rather than true interval mapping, and precluded confident ordering/orienting of scaffolds along each chromosome. Nonetheless, our study increased the genomic resources available for the A. grisella system. Enabled by ever more powerful technologies, future investigators will be able to leverage our data to provide more detailed genetic dissection of male song variation in A. grisella.


Assuntos
Mapeamento Cromossômico , Genoma , Genômica , Mariposas/genética , Animais , Biologia Computacional/métodos , Ligação Genética , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Locos de Características Quantitativas
13.
PLoS One ; 14(2): e0212566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30789948

RESUMO

Use of shock waves to temporarily increase the permeability of the cell membrane is a promising approach in drug delivery and gene therapy to allow the translocation of macromolecules and small polar molecules into the cytoplasm. Our understanding of how the characteristics of the pressure profile of shock waves, such as peak pressure and pulse duration, influences membrane properties is limited. Here we study the response of lipid bilayer membranes to shock pulses with different pressure profiles using atomistic molecular dynamics simulations. From our simulation results, we find that the transient deformation/disordering of the membrane depends on both the magnitude and the pulse duration of the pressure profile of the shock pulse. For a low pressure impulse, peak pressure has a dominant effect on membrane structural changes, while for the high pressure impulse, we find that there exists an optimal pulse duration at which membrane deformation/disordering is maximized.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Algoritmos , Fenômenos Biomecânicos , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Humanos , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Pressão
14.
J Chem Phys ; 149(21): 214901, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525711

RESUMO

We present a mesoscopic model for bitumen and bituminous mixtures. The model, which is based on dissipative particle dynamics, consists of different dynamical entities that represent the different characteristic time scales. Through the stress relaxation function, the mechanical properties of the model are investigated. For pure bitumen, the viscosity features super-Arrhenius behavior in the low-temperature regime in agreement with experimental data. The frequency-dependent viscoelastic properties show purely viscous behavior at low frequencies with increasing elasticity and hardening at higher frequencies, as expected. The model dynamics are analyzed in the framework of longitudinal hydrodynamics. The thermal process is two orders of magnitude slower than the attenuation of the density-wave propagation; hence the dynamic structure factor is dominated by a sharp Rayleigh peak and a relatively broad Brillouin peak. The model is applied to study triblock-copolymer-modified bitumen mixtures. Effects of the polymer concentration and end-block interactions with the bitumen are investigated. While the polymer concentration has an effect on the mechanical properties, the effect of increasing repulsive interactions between the bitumen and the polymer end-blocks is much more dramatic; it increases the viscosity of the mixture and shifts the onset of the elastic behavior to lower frequencies. For increased repulsion, the polymer end-blocks form small clusters that can be connected by a dynamic polymer backbone network. A simple Flory-Huggins analysis reveals the onset of segregation of the end-blocks in the bitumen mixture in agreement with the simulation data. Hence the changed mechanical properties are due to the emergence of large-scale structures as the repulsion is increased, which conforms to known mechanisms of microphase separation in polymer-modified bitumens.

15.
J Chem Phys ; 148(3): 034503, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29352789

RESUMO

This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

16.
J Diabetes Sci Technol ; 12(3): 701-708, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29277103

RESUMO

BACKGROUND: Diabetes is a chronic condition that requires constant self-management. As a consequence, several software platforms have been developed to facilitate the tracking of diabetes data to improve diabetes management. Our aim was to determine the real-world glycemic benefits of a mobile diabetes management platform used by individuals with type 1 and type 2 diabetes. METHODS: Mobile platform-using (n = 899) and control (n = 900) participants meeting specific minimum data criteria were randomly selected from a database of diabetes users. All results were modeled using different mixed effect generalized linear models, assigning random intercepts for each user, and adjusting the distribution assumption for each outcome. RESULTS: Users of the mobile platform increased their frequency of blood glucose monitoring (+8.8 tests per month, 95% CI [3.4, 14.1], P < .001) and had fewer hyperglycemic events and lower average glucose levels compared to the control group. In addition, a mobile user could expect a 3.5% drop in average BG (-6.4 mg/dL, 95% CI [-2.0, -10.7], P < .001) and a 10.7% decrease in hyperglycemia ( P < .001) after 2 months. CONCLUSION: Users of the mobile platform tested their BG more often and demonstrated greater improvement in blood glucose compared to users who did not use the mobile platform. This supports previous studies indicating that digital technologies can enhance diabetes care in a real-world setting.


Assuntos
Automonitorização da Glicemia/métodos , Glicemia/análise , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Aplicativos Móveis , Adulto , Idoso , Bases de Dados como Assunto , Feminino , Índice Glicêmico , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
17.
Proc Natl Acad Sci U S A ; 113(48): E7740-E7748, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849607

RESUMO

Small animals typically localize sound sources by means of complex internal connections and baffles that effectively increase time or intensity differences between the two ears. However, some miniature acoustic species achieve directional hearing without such devices, indicating that other mechanisms have evolved. Using 3D laser vibrometry to measure tympanum deflection, we show that female lesser waxmoths (Achroia grisella) can orient toward the 100-kHz male song, because each ear functions independently as an asymmetric pressure gradient receiver that responds sharply to high-frequency sound arriving from an azimuth angle 30° contralateral to the animal's midline. We found that females presented with a song stimulus while running on a locomotion compensation sphere follow a trajectory 20°-40° to the left or right of the stimulus heading but not directly toward it, movement consistent with the tympanum deflections and suggestive of a monaural mechanism of auditory tracking. Moreover, females losing their track typically regain it by auditory scanning-sudden, wide deviations in their heading-and females initially facing away from the stimulus quickly change their general heading toward it, orientation indicating superior ability to resolve the front-rear ambiguity in source location. X-ray computer-aided tomography (CT) scans of the moths did not reveal any internal coupling between the two ears, confirming that an acoustic insect can localize a sound source based solely on the distinct features of each ear.


Assuntos
Mariposas/fisiologia , Animais , Evolução Biológica , Ecolocação , Feminino , Voo Animal , Audição , Masculino , Mariposas/anatomia & histologia
18.
Biomacromolecules ; 17(11): 3838-3844, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27723982

RESUMO

Layer-by-layer deposition of polyelectrolytes (PEs) onto self-assembled liposomes represents an alternative to PE deposition on solid particles for the formation of hollow nanoscale capsules. This work examines how competition between PE-liposome and inter-PE interactions drives the structure and colloidal stability of layersomes. Unlike solid particles, liposomes respond to adsorbed material through lipid reorganization and changes in size and shape. This responsive nature could yield new types of layered PE structures. We show that sequential deposition of strong biopolyelectrolytes, dextran sulfate-sodium salt (DxS-) and poly-l-arginine (PA+), onto cationic liposomes in water yields the expected charge inversion behavior commonly observed for dispersed particles. However, cryogenic transmission electron microscopy results show that the layersomes formed and their PE coatings were heterogeneous. The PE coatings contained PE complexes (PECs) that were formed when an even number of layers (2 or 4) was deposited. PECs remained attached as patches that were spatially distinguishable. This behavior was confirmed through fluorescence anisotropy measurements of liposome bilayer fluidity, where PA+ counteracted the ordering effects of DxS- on the lipid bilayer through charge neutralization and local PEC desorption. With increased charge screening, DxS- desorbed from the layersomes, whereas the patchy layersomes terminating in PA+ retained their PE coatings and colloidal stability at higher salt concentrations. To our knowledge, this is the first time such patchy layersome structures have been observed.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos/química , Nanopartículas/química , Polieletrólitos/química , Anisotropia , Coloides/química , Sulfato de Dextrana/química , Sulfato de Dextrana/uso terapêutico , Humanos , Bicamadas Lipídicas/química , Lipossomos/uso terapêutico , Lipossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Peptídeos/química , Peptídeos/uso terapêutico , Polieletrólitos/uso terapêutico , Água/química
19.
Sci Rep ; 6: 34369, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670673

RESUMO

Synchrony and alternation in large animal choruses are often viewed as adaptations by which cooperating males increase their attractiveness to females or evade predators. Alternatively, these seemingly composed productions may simply emerge by default from the receiver psychology of mate choice. This second, emergent property hypothesis has been inferred from findings that females in various acoustic species ignore male calls that follow a neighbor's by a brief interval, that males often adjust the timing of their call rhythm and reduce the incidence of ineffective, following calls, and from simulations modeling the collective outcome of male adjustments. However, the purported connection between male song timing and female preference has never been tested experimentally, and the emergent property hypothesis has remained speculative. Studying a distinctive katydid species genetically structured as isolated populations, we conducted a comparative phylogenetic analysis of the correlation between male call timing and female preference. We report that across 17 sampled populations male adjustments match the interval over which females prefer leading calls; moreover, this correlation holds after correction for phylogenetic signal. Our study is the first demonstration that male adjustments coevolved with female preferences and thereby confirms the critical link in the emergent property model of chorus evolution.

20.
J Phys Chem B ; 120(24): 5470-80, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27248331

RESUMO

Systems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough to counterbalance the increase in volume due to the addition of water. It is not due to a decrease of interaction energy between the slightly polar asphaltene molecules. The water molecules tend to form a droplet in bitumen. The size and the distribution of sizes of the droplets are quantified, with multiple droplets being more stable at the highest temperature simulated. The droplet is mainly located close to the saturates molecules in bitumen. Finally, it is shown that the water dynamics is much slower in bitumen than in pure water because it is governed by the diffusion of the droplet and not of the single molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA