Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neuroendocrinol ; 36(2): e13363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192267

RESUMO

The light-sensitive protein Opsin 3 (Opn3) is present throughout the mammalian brain; however, the role of Opn3 in this organ remains unknown. Since Opn3 encoded mRNA is modulated in the supraoptic and paraventricular nucleus of the hypothalamus in response to osmotic stimuli, we have explored by in situ hybridization the expression of Opn3 in these nuclei. We have demonstrated that Opn3 is present in the male rat magnocellular neurones expressing either the arginine vasopressin or oxytocin neuropeptides and that Opn3 increases in both neuronal types in response to osmotic stimuli, suggesting that Opn3 functions in both cell types and that it might be involved in regulating water balance. Using rat hypothalamic organotypic cultures, we have demonstrated that the hypothalamus is sensitive to light and that the observed light sensitivity is mediated, at least in part, by Opn3. The data suggests that hypothalamic Opn3 can mediate a light-sensitive role to regulate circadian homeostatic processes.


Assuntos
Hipotálamo , Animais , Masculino , Ratos , Arginina Vasopressina/metabolismo , Hipotálamo/metabolismo , Hibridização In Situ , Mamíferos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismo
2.
iScience ; 26(9): 107574, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664605

RESUMO

Desert animals have evolved systems that enable them to thrive under dry conditions. Focusing on the kidney, we have investigated the transcriptomic adaptations that enable a desert rodent, the Lesser Egyptian Jerboa (Jaculus jaculus), to withstand water deprivation and opportunistic rehydration. Analysis of the whole kidney transcriptome showed many differentially expressed genes in the Jerboa kidney, 6.4% of genes following dehydration and an even greater number (36.2%) following rehydration compared to control. Genes correlated with the rehydration condition included many ribosomal protein coding genes suggesting a concerted effort to accelerate protein synthesis when water is made available. We identify an increase in TGF-beta signaling antagonists in dehydration (e.g., GREM2). We also describe expression of multiple aquaporin and solute carrier transporters mapped to specific nephron segments. The desert adapted renal transcriptome presented here is a valuable resource to expand our understanding of osmoregulation beyond that derived from model organisms.

3.
NPJ Aging ; 9(1): 12, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264028

RESUMO

Ageing is associated with altered neuroendocrine function. In the context of the hypothalamic supraoptic nucleus, which makes the antidiuretic hormone vasopressin, ageing alters acute responses to hyperosmotic cues, rendering the elderly more susceptible to dehydration. Chronically, vasopressin has been associated with numerous diseases of old age, including type 2 diabetes and metabolic syndrome. Bulk RNAseq transcriptome analysis has been used to catalogue the polyadenylated supraoptic nucleus transcriptomes of adult (3 months) and aged (18 months) rats in basal euhydrated and stimulated dehydrated conditions. Gene ontology and Weighted Correlation Network Analysis revealed that ageing is associated with alterations in the expression of extracellular matrix genes. Interestingly, whilst the transcriptomic response to dehydration is overall blunted in aged animals compared to adults, there is a specific enrichment of differentially expressed genes related to neurodegenerative processes in the aged cohort, suggesting that dehydration itself may provoke degenerative consequences in aged rats.

4.
Neuroendocrinology ; 113(10): 1008-1023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37271138

RESUMO

INTRODUCTION: Despite the widespread use of general anaesthetics, the mechanisms mediating their effects are still not understood. Although suppressed in most parts of the brain, neuronal activity, as measured by FOS activation, is increased in the hypothalamic supraoptic nucleus (SON) by numerous general anaesthetics, and evidence points to this brain region being involved in the induction of general anaesthesia (GA) and natural sleep. Posttranslational modifications of proteins, including changes in phosphorylation, enable fast modulation of protein function which could be underlying the rapid effects of GA. In order to identify potential phosphorylation events in the brain-mediating GA effects, we have explored the phosphoproteome responses in the rat SON and compared these to cingulate cortex (CC) which displays no FOS activation in response to general anaesthetics. METHODS: Adult Sprague-Dawley rats were treated with isoflurane for 15 min. Proteins from the CC and SON were extracted and processed for nano-LC mass spectrometry (LC-MS/MS). Phosphoproteomic determinations were performed by LC-MS/MS. RESULTS: We found many changes in the phosphoproteomes of both the CC and SON in response to 15 min of isoflurane exposure. Pathway analysis indicated that proteins undergoing phosphorylation adaptations are involved in cytoskeleton remodelling and synaptic signalling events. Importantly, changes in protein phosphorylation appeared to be brain region specific suggesting that differential phosphorylation adaptations might underlie the different neuronal activity responses to GA between the CC and SON. CONCLUSION: In summary, these data suggest that rapid posttranslational modifications in proteins involved in cytoskeleton remodelling and synaptic signalling events might mediate the central mechanisms mediating GA.


Assuntos
Anestésicos Gerais , Isoflurano , Ratos , Animais , Núcleo Supraóptico/metabolismo , Isoflurano/farmacologia , Isoflurano/metabolismo , Cromatografia Líquida , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-fos/metabolismo , Espectrometria de Massas em Tandem , Hipotálamo/metabolismo , Anestésicos Gerais/metabolismo , Anestésicos Gerais/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo
5.
J Pediatr Gastroenterol Nutr ; 77(3): 354-357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347142

RESUMO

Non-caseating granulomas may indicate a more aggressive phenotype of Crohn disease (CD). Genetic associations of granulomatous CD (GCD) may help elucidate disease pathogenesis. Whole-exome sequencing was performed on peripheral blood-derived DNA from 17 pediatric patients with GCD and 19 with non-GCD (NGCD), and from an independent validation cohort of 44 GCD and 19 NGCD cases. PLINK (a tool set for whole-genome association and population-based linkage analyses) analysis was used to identify single nucleotide polymorphisms (SNPs) differentiating between groups, and subgroup allele frequencies were also compared to a public genomic database (gnomAD). The Combined Annotation Dependent Depletion scoring tool was used to predict deleteriousness of SNPs. Human leukocyte antigen (HLA) haplotype findings were compared to a control group (n = 8496). PLINK-based analysis between GCD and NGCD groups did not find consistently significant hits. gnomAD control comparisons, however, showed consistent subgroup associations with DGKZ , ESRRA , and GXYLT1 , genes that have been implicated in mammalian granulomatous inflammation. Our findings may guide future research and precision medicine.


Assuntos
Doença de Crohn , Criança , Humanos , Doença de Crohn/complicações , Sequenciamento do Exoma , Predisposição Genética para Doença , Granuloma/genética , Granuloma/patologia , Fenótipo , Receptor ERRalfa Relacionado ao Estrogênio
6.
Mol Cell Proteomics ; 22(5): 100544, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030596

RESUMO

The cell bodies of hypothalamic magnocellular neurones are densely packed in the hypothalamic supraoptic nucleus, whereas their axons project to the anatomically discrete posterior pituitary gland. We have taken advantage of this unique anatomical structure to establish proteome and phosphoproteome dynamics in neuronal cell bodies and axonal terminals in response to physiological stimulation. We have found that proteome and phosphoproteome responses to neuronal stimulation are very different between somatic and axonal neuronal compartments, indicating the need of each cell domain to differentially adapt. In particular, changes in the phosphoproteome in the cell body are involved in the reorganization of the cytoskeleton and in axonal terminals the regulation of synaptic and secretory processes. We have identified that prohormone precursors including vasopressin and oxytocin are phosphorylated in axonal terminals and are hyperphosphorylated following stimulation. By multiomic integration of transcriptome and proteomic data, we identify changes to proteins present in afferent inputs to this nucleus.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Supraóptico/metabolismo
7.
Mol Metab ; 70: 101692, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773648

RESUMO

OBJECTIVES: The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release. METHODS: We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland. RESULTS: We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis. CONCLUSION: In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.


Assuntos
Hipotálamo , Liraglutida , Liraglutida/farmacologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Vasopressinas/genética , Vasopressinas/metabolismo
8.
Br J Cancer ; 128(4): 618-625, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36434155

RESUMO

BACKGROUND: Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the risk of seven site-specific cancers. METHODS: SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology. RESULTS: Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01-1.36; P = 0.03). Similar findings were identified when analysing cigarettes per day as an outcome (Beta = 0.44; 95% CI: 0.26-0.61; P = 1.62 × 10-6), highlighting a possible shared aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI: 1.07-2.74; P = 0.02), highlighting a putatively important role in the aetiology of endometrial cancer. CONCLUSIONS: The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-specific cancers.


Assuntos
Neoplasias do Endométrio , Neoplasias Pulmonares , Humanos , Feminino , Índice de Massa Corporal , Fatores de Risco , Obesidade/complicações , Neoplasias do Endométrio/genética , Neoplasias Pulmonares/complicações , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
9.
Commun Biol ; 5(1): 1008, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151304

RESUMO

Water conservation is vital for life in the desert. The dromedary camel (Camelus dromedarius) produces low volumes of highly concentrated urine, more so when water is scarce, to conserve body water. Two hormones, arginine vasopressin and oxytocin, both produced in the supraoptic nucleus, the core hypothalamic osmoregulatory control centre, are vital for this adaptive process, but the mechanisms that enable the camel supraoptic nucleus to cope with osmotic stress are not known. To investigate the central control of water homeostasis in the camel, we first build three dimensional models of the camel supraoptic nucleus based on the expression of the vasopressin and oxytocin mRNAs in order to facilitate sampling. We then compare the transcriptomes of the supraoptic nucleus under control and water deprived conditions and identified genes that change in expression due to hyperosmotic stress. By comparing camel and rat datasets, we have identified common elements of the water deprivation transcriptomic response network, as well as elements, such as extracellular matrix remodelling and upregulation of angiotensinogen expression, that appear to be unique to the dromedary camel and that may be essential adaptations necessary for life in the desert.


Assuntos
Camelus , Transcriptoma , Angiotensinogênio/genética , Animais , Arginina Vasopressina/genética , Camelus/genética , Ocitocina/genética , Ratos , Água
10.
Mol Metab ; 63: 101542, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35803572

RESUMO

OBJECTIVES: Dynamic changes to neuropeptide hormone synthesis and secretion by hypothalamic neuroendocrine cells is essential to ensure metabolic homeostasis. The specialised molecular mechanisms that allow neuroendocrine cells to synthesise and secrete vast quantities of neuropeptides remain ill defined. The objective of this study was to identify novel genes and pathways controlled by transcription factor and endoplasmic reticulum stress sensor Creb3l1 which is robustly activated in hypothalamic magnocellular neurones in response to increased demand for protein synthesis. METHODS: We adopted a multiomic strategy to investigate specific roles of Creb3l1 in rat magnocellular neurones. We first performed chromatin immunoprecipitation followed by genome sequencing (ChIP-seq) to identify Creb3l1 genomic targets and then integrated this data with RNA sequencing data from physiologically stimulated and Creb3l1 knockdown magnocellular neurones. RESULTS: The data converged on Creb3l1 targets that code for ribosomal proteins and endoplasmic reticulum proteins crucial for the maintenance of cellular proteostasis. We validated genes that compose the PERK arm of the unfolded protein response pathway including Eif2ak3, Eif2s1, Atf4 and Ddit3 as direct Creb3l1 targets. Importantly, knockdown of Creb3l1 in the hypothalamus led to a dramatic depletion in neuropeptide synthesis and secretion. The physiological outcomes from studies of paraventricular and supraoptic nuclei Creb3l1 knockdown animals were changes to food and water consumption. CONCLUSION: Collectively, our data identify Creb3l1 as a comprehensive controller of the PERK signalling pathway in magnocellular neurones in response to physiological stimulation. The broad regulation of neuropeptide synthesis and secretion by Creb3l1 presents a new therapeutic strategy for metabolic diseases.


Assuntos
Células Neuroendócrinas , Animais , Regulação da Expressão Gênica , Proteostase , Ratos , Ratos Sprague-Dawley , Núcleo Supraóptico/metabolismo
11.
Circ Res ; 130(5): 694-707, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100822

RESUMO

BACKGROUND: Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation. METHODS: Using a hypothesis-free RNA-seq approach, we investigated potential molecular targets implicated in energy metabolism mediating CB sensitization and its regulation of sympathetic outflow in experimental hypertension. Identified targets were characterized using molecular and functional techniques assessing peripheral chemoreflex sensitivity in situ and in vivo. RESULTS: We discovered GLP1R (glucagon-like peptide-1 receptor) expression in the CBs of rat and human and showed that its decreased expression is linked to sympathetic hyperactivity in rats with cardiometabolic disease. We demonstrate GLP1R to be localized to CB chemosensory cells, while targeted administration of GLP1R agonist to the CB lowered its basal discharge and attenuated chemoreflex-evoked blood pressure and sympathetic responses. Importantly, hyperglycemia-induced peripheral chemoreflex sensitization and associated basal sympathetic overactivity were abolished by GLP1R activation in the CB suggesting a role in a homeostatic response to high blood glucose. CONCLUSIONS: We show that GLP1 (glucagon-like peptide-1) modulates the peripheral chemoreflex acting on the CB, supporting this organ as a multimodal receptor. Our findings pinpoint CBs as potential targets for ameliorating excessive sympathetic activity using GLP1R agonists in the hypertensive-diabetic condition.


Assuntos
Corpo Carotídeo , Hipertensão , Animais , Pressão Sanguínea , Corpo Carotídeo/metabolismo , Glucose/metabolismo , Ratos , Ratos Endogâmicos SHR
12.
Neuroendocrinology ; 112(11): 1058-1077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051932

RESUMO

INTRODUCTION: Water homoeostasis is achieved by secretion of the peptide hormones arginine vasopressin (AVP) and oxytocin (OXT) that are synthesized by separate populations of magnocellular neurones (MCNs) in the supraoptic and paraventricular (PVN) nuclei of the hypothalamus. To further understand the molecular mechanisms that facilitate biosynthesis of AVP and OXT by MCNs, we have explored the spatiotemporal dynamic, both mRNA and protein expression, of two genes identified by our group as being important components of the osmotic defence response: Caprin2 and Creb3l1. METHODS: By RNA in situ hybridization and immunohistochemistry, we have characterized the expression of Caprin2 and Creb3l1 in MCNs in the basal state, in response to dehydration, and during rehydration in the rat. RESULTS: We found that Caprin2 and Creb3l1 are expressed in AVP and OXT MCNs and in response to dehydration expression increases in both MCN populations. Protein levels mirror the increase in transcript levels for both CREB3L1 and CAPRIN2. In view of increased CREB3L1 and CAPRIN2 expression in OXT neurones by dehydration, we explored OXT-specific functions for these genes. By luciferase assays, we demonstrate that CREB3L1 may be a transcription factor regulating Oxt gene expression. By RNA immunoprecipitation assays and Northern blot analysis of Oxt mRNA poly(A) tails, we have found that CAPRIN2 binds to Oxt mRNA and regulates its poly(A) tail length. Moreover, in response to dehydration, Caprin2 mRNA is subjected to nuclear retention, possibly to regulate Caprin2 mRNA availability in the cytoplasm. CONCLUSION: The exploration of the spatiotemporal dynamics of Creb3l1- and Caprin2-encoded mRNAs and proteins has provided novel insights beyond the AVP-ergic system, revealing novel OXT-ergic system roles of these genes in the osmotic defence response.


Assuntos
Arginina Vasopressina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Ocitocina , Proteínas de Ligação a RNA , Animais , Ratos , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Desidratação/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Ocitocina/genética , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Núcleo Supraóptico/metabolismo , Água/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas de Ligação a RNA/genética
13.
Am J Hum Genet ; 109(2): 240-252, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090585

RESUMO

Body mass index (BMI) is a complex disease risk factor known to be influenced by genes acting via both metabolic pathways and appetite regulation. In this study, we aimed to gain insight into the phenotypic consequences of BMI-associated genetic variants, which may be mediated by their expression in different tissues. First, we harnessed meta-analyzed gene expression datasets derived from subcutaneous adipose (n = 1257) and brain (n = 1194) tissue to identify 86 and 140 loci, respectively, which provided evidence of genetic colocalization with BMI. These two sets of tissue-partitioned loci had differential effects with respect to waist-to-hip ratio, suggesting that the way they influence fat distribution might vary despite their having very similar average magnitudes of effect on BMI itself (adipose = 0.0148 and brain = 0.0149 standard deviation change in BMI per effect allele). For instance, BMI-associated variants colocalized with TBX15 expression in adipose tissue (posterior probability [PPA] = 0.97), but not when we used TBX15 expression data derived from brain tissue (PPA = 0.04) This gene putatively influences BMI via its role in skeletal development. Conversely, there were loci where BMI-associated variants provided evidence of colocalization with gene expression in brain tissue (e.g., NEGR1, PPA = 0.93), but not when we used data derived from adipose tissue, suggesting that these genes might be more likely to influence BMI via energy balance. Leveraging these tissue-partitioned variant sets through a multivariable Mendelian randomization framework provided strong evidence that the brain-tissue-derived variants are predominantly responsible for driving the genetically predicted effects of BMI on cardiovascular-disease endpoints (e.g., coronary artery disease: odds ratio = 1.05, 95% confidence interval = 1.04-1.07, p = 4.67 × 10-14). In contrast, our analyses suggested that the adipose tissue variants might predominantly be responsible for the underlying relationship between BMI and measures of cardiac function, such as left ventricular stroke volume (beta = 0.21, 95% confidence interval = 0.09-0.32, p = 6.43 × 10-4).


Assuntos
Índice de Massa Corporal , Moléculas de Adesão Celular Neuronais/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Proteínas com Domínio T/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Moléculas de Adesão Celular Neuronais/metabolismo , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Variação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Obesidade/metabolismo , Obesidade/patologia , Volume Sistólico/fisiologia , Proteínas com Domínio T/metabolismo , Relação Cintura-Quadril
14.
J Neuroendocrinol ; 33(8): e13007, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297454

RESUMO

The hypothalamic supraoptic nucleus (SON) is a core osmoregulatory control centre that deciphers information about the metabolic state of the organism and orchestrates appropriate homeostatic (endocrine) and allostatic (behavioural) responses. We have used RNA sequencing to describe the polyadenylated transcriptome of the SON of the male Wistar Han rat. These data have been mined to generate comprehensive catalogues of functional classes of genes (enzymes, transcription factors, endogenous peptides, G protein coupled receptors, transporters, catalytic receptors, channels and other pharmacological targets) expressed in this nucleus in the euhydrated state, and that together form the basal substrate for its physiological interactions. We have gone on to show that fluid deprivation for 3 days (dehydration) results in changes in the expression levels of 2247 RNA transcripts, which have similarly been functionally catalogued, and further mined to describe enriched gene categories and putative regulatory networks (Regulons) that may have physiological importance in SON function related plasticity. We hope that the revelation of these genes, pathways and networks, most of which have no characterised roles in the SON, will encourage the neuroendocrine community to pursue new investigations into the new 'known-unknowns' reported in the present study.

15.
Commun Biol ; 4(1): 779, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163009

RESUMO

The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.


Assuntos
Água Corporal/metabolismo , Camelus/fisiologia , Colesterol/fisiologia , Rim/metabolismo , Animais , Aquaporina 2/fisiologia , Desidratação/metabolismo , Clima Desértico , Metabolismo dos Lipídeos , Masculino , Proteoma , ATPase Trocadora de Sódio-Potássio/fisiologia , Transcriptoma
16.
Sci Rep ; 11(1): 393, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432092

RESUMO

Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas Estruturais Virais/metabolismo , Zika virus/metabolismo , Células A549 , Adulto , Idoso , Animais , Células Cultivadas , Chlorocebus aethiops , Culicidae , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Células Vero , Internalização do Vírus , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
17.
Neuroendocrinology ; 111(1-2): 70-86, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31955161

RESUMO

BACKGROUND/AIMS: Furosemide is a loop diuretic widely used in clinical practice for the treatment of oedema and hypertension. The aim of this study was to determine physiological and molecular changes in the hypothalamic-neurohypophysial system as a consequence of furosemide-induced sodium depletion. METHODS: Male rats were sodium depleted by acute furosemide injection (10 and 30 mg/kg) followed by access to low sodium diet and distilled water for 24 h. The renal and behavioural consequences were evaluated, while blood and brains were collected to evaluate the neuroendocrine and gene expression responses. RESULTS: Furosemide treatment acutely increases urinary sodium and water excretion. After 24 h, water and food intake were reduced, while plasma angiotensin II and corticosterone were increased. After hypertonic saline presentation, sodium-depleted rats showed higher preference for salt. Interrogation using RNA sequencing revealed the expression of 94 genes significantly altered in the hypothalamic paraventricular nucleus (PVN) of sodium-depleted rats (31 upregulated and 63 downregulated). Out of 9 genes chosen, 5 were validated by quantitative PCR in the PVN (upregulated: Ephx2, Ndnf and Vwf; downregulated: Caprin2 and Opn3). The same genes were also assessed in the supraoptic nucleus (SON, upregulated: Tnnt1, Mis18a, Nr1d1 and Dbp; downregulated: Caprin2 and Opn3). As a result of these plastic transcriptome changes, vasopressin expression was decreased in PVN and SON, whilst vasopressin and oxytocin levels were reduced in plasma. CONCLUSIONS: We thus have identified novel genes that might regulate vasopressin gene expression in the hypothalamus controlling the magnocellular neurons secretory response to body sodium depletion and consequently hypotonic stress.


Assuntos
Diuréticos/farmacologia , Furosemida/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sódio/metabolismo , Transcriptoma/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Animais , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Transcriptoma/fisiologia , Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
18.
BMC Vet Res ; 16(1): 458, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228660

RESUMO

BACKGROUND: Dehydration has deleterious effects in many species, but camels tolerate long periods of water deprivation without serious health compromise. The kidney plays crucial role in water conservation, however, some reports point to elevated kidney function tests in dehydrated camels. In this work, we investigated the effects of dehydration and rehydration on kidney cortex and medulla with respect to pro-inflammatory markers, oxidative stress and apoptosis along with corresponding gene expression. RESULTS: The cytokines IL-1ß and IL-18 levels were significantly elevated in the kidney cortex of dehydrated camel, possibly expressed by tubular epithelium, podocytes and/or mesangial cells. Elevation of IL-18 persisted after rehydration. Dehydration induced oxidative stress in kidney cortex evident by significant increases in MDA and GSH, but significant decreases in SOD and CAT. In the medulla, CAT decreased significantly, but MDA, GSH and SOD levels were not affected. Rehydration abolished the oxidative stress. In parallel with the increased levels of MDA, we observed increased levels of PTGS1 mRNA, in MDA synthesis pathway. GCLC mRNA expression level, involved in GSH synthesis, was upregulated in kidney cortex by rehydration. However, both SOD1 and SOD3 mRNA levels dropped, in parallel with SOD activity, in the cortex by dehydration. There were significant increases in caspases 3 and 9, p53 and PARP1, indicating apoptosis was triggered by intrinsic pathway. Expression of BCL2l1 mRNA levels, encoding for BCL-xL, was down regulated by dehydration in cortex. CASP3 expression level increased significantly in medulla by dehydration and continued after rehydration whereas TP53 expression increased in cortex by rehydration. Changes in caspase 8 and TNF-α were negligible to instigate extrinsic apoptotic trail. Generally, apoptotic markers were extremely variable after rehydration indicating that animals did not fully recover within three days. CONCLUSIONS: Dehydration causes oxidative stress in kidney cortex and apoptosis in cortex and medulla. Kidney cortex and medulla were not homogeneous in all parameters investigated indicating different response to dehydration/rehydration. Some changes in tested parameters directly correlate with alteration in steady-state mRNA levels.


Assuntos
Camelus/fisiologia , Desidratação/veterinária , Rim/fisiopatologia , Privação de Água/fisiologia , Animais , Apoptose/fisiologia , Desidratação/fisiopatologia , Hidratação/veterinária , Inflamação/veterinária , Masculino , Estresse Oxidativo
19.
PLoS One ; 14(6): e0216679, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211771

RESUMO

The "ship" of the Arabian and North African deserts, the one-humped dromedary camel (Camelus dromedarius) has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone arginine vasopressin (AVP), which is made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exerts its effects at the level of the kidney to provoke water conservation. Interestingly, our electron microscopy studies have shown that the ultrastructure of the dromedary HNS changes according to season, suggesting that in the arid conditions of summer the HNS is in an activated state, in preparation for the likely prospect of water deprivation. Based on our dromedary genome sequence, we have carried out an RNAseq analysis of the dromedary HNS in summer and winter. Amongst the 171 transcripts found to be significantly differentially regulated (>2 fold change, p value <0.05) there is a significant over-representation of neuropeptide encoding genes, including that encoding AVP, the expression of which appeared to increase in summer. Identification of neuropeptides in the HNS and analysis of neuropeptide profiles in extracts from individual camels using mass spectrometry indicates that overall AVP peptide levels decreased in the HNS during summer compared to winter, perhaps due to increased release during periods of dehydration in the dry season.


Assuntos
Adaptação Fisiológica , Camelus/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Estações do Ano , Animais , Camelus/genética , Perfilação da Expressão Gênica , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/ultraestrutura
20.
Neurobiol Aging ; 65: 178-191, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29494864

RESUMO

Elderly people exhibit a diminished capacity to cope with osmotic challenges such as dehydration. We have undertaken a detailed molecular analysis of arginine vasopressin (AVP) biosynthetic processes in the supraoptic nucleus (SON) of the hypothalamus and secretory activity in the posterior pituitary of adult (3 months) and aged (18 months) rats, to provide a comprehensive analysis of age-associated changes to the AVP system. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, we identified differences in pituitary peptides, including AVP, in adult and aged rats under both basal and dehydrated states. In the SON, increased Avp gene transcription, coincided with reduced Avp promoter methylation in aged rats. Based on transcriptome data, we have previously characterized a number of novel dehydration-induced regulatory factors involved in the response of the SON to osmotic cues. We found that some of these increase in expression with age, while dehydration-induced expression of these genes in the SON was attenuated in aged rats. In summary, we show that aging alters the rat AVP system at the genome, transcriptome, and peptidome levels. These alterations however did not affect circulating levels of AVP in basal or dehydrated states.


Assuntos
Envelhecimento/metabolismo , Arginina Vasopressina/biossíntese , Arginina Vasopressina/genética , Desidratação/genética , Desidratação/metabolismo , Sistemas Neurossecretores/metabolismo , Osmorregulação/fisiologia , Núcleo Supraóptico/metabolismo , Animais , Arginina Vasopressina/metabolismo , Genoma/genética , Masculino , Espectrometria de Massas/métodos , Metilação , Concentração Osmolar , Neuro-Hipófise/metabolismo , Regiões Promotoras Genéticas , Ratos Wistar , Transcrição Gênica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA