Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474751

RESUMO

Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder cancer cells was evaluated. Mechanisms behind the SFN influence were explored by assessing levels of the integrin adhesion receptors ß1 (total and activated) and ß4 and their functional relevance. To evaluate cell differentiation processes, E- and N-cadherin, vimentin and cytokeratin (CK) 8/18 expression were examined. SFN down-regulated bladder cancer cell adhesion with cell line and resistance-specific differences. Different responses to SFN were reflected in integrin expression that depended on the cell line and presence of resistance. Chemotactic movement of RT112, T24, and TCCSUP (RT4 did not migrate) was markedly blocked by SFN in both chemo-sensitive and chemo-resistant cells. Integrin-blocking studies indicated ß1 and ß4 as chemotaxis regulators. N-cadherin was diminished by SFN, particularly in sensitive and resistant T24 and RT112 cells, whereas E-cadherin was increased in RT112 cells (not detectable in RT4 and TCCSup cells). Alterations in vimentin and CK8/18 were also apparent, though not the same in all cell lines. SFN exposure resulted in translocation of E-cadherin (RT112), N-cadherin (RT112, T24), and vimentin (T24). SFN down-regulated adhesion and migration in chemo-sensitive and chemo-resistant bladder cancer cells by acting on integrin ß1 and ß4 expression and inducing the mesenchymal-epithelial translocation of cadherins and vimentin. SFN does, therefore, possess potential to improve bladder cancer therapy.


Assuntos
Isotiocianatos , Sulfóxidos , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Cisplatino , Gencitabina , Vimentina , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Caderinas/metabolismo , Integrinas/metabolismo , Integrinas/uso terapêutico
2.
J Ethnopharmacol ; 319(Pt 3): 117298, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866463

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrapleura tetraptera (Schumach. and Thonn.) Taub. (Fabaceae) is a tropical plant that is used in Cameroon pharmacopeia for the treatment of many cancers including prostate cancer (PCa), which is a major cause of men's death worldwide. The objective of this study was to evaluate the anticancer properties as well as underlying mechanisms of isolates from T. tetraptera on DU145, PC3 and LNCaP cancer cell lines. MATERIALS AND METHODS: Eight (8) compounds were purified from T. tetraptera stem bark extract through silica gel column chromatography (CC) and characterized using spectroscopic techniques (1D and 2D NMR), HRESIMS. Cell growth was assessed by a well-characterized MTT assay, while BrdU and clonogenicity assays provided information on the cell proliferation index. Further, the impact of the compounds on cell cycle progression and cell death were performed through Flow cytometry. Cell adhesion, cell migration and chemotaxis along with some proteins of epithelial-mesenchymal transition (EMT) were assayed. RESULTS: Out of the eight (1-8) isolates from T. tetraptera only oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin showed potent cell growth arrest with an estimated CC50 of 15, 23, 16 and 17, 26, 16 µg/mL on DU145, PC3 and LNCaP cells, respectively. A 15% (DU145) and 25% (LNCaP) increase in apoptotic cells induced by oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin at 10 µg/mL were noticed. Oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin at 2.5 and 10 µg/mL reduced the number of cells in S-phase and raised cells in G2/M phase. At the same concentrations, they decreased the number of invading DU145 cells and increased the adherence of DU145 cells to fibronectin and collagen matrix at tested concentrations, accompanied by an increase in integrin ß-1 (10 µg/mL) and integrin ß-4 (2.5 µg/mL) expression. Furthermore, a down-regulation of pcdk1, cdk2, Bcl-2, N-Cad, vimentin and cytokeratine 8-18 was noticed while, p19, p27, p53 pAKT, Bax, caspase-3 and E-Cad were up-regulated. CONCLUSIONS: This study outlines for the first time, the anticancer ability of compounds oleanane-3-O-ß-D-glucoside-2'-acetamide (4) and aridanin (6) from Tetrapleura tetraptera and proposes their putative mechanisms of action.


Assuntos
Fabaceae , Neoplasias da Próstata , Tetrapleura , Masculino , Humanos , Tetrapleura/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Integrinas , Apoptose , Linhagem Celular Tumoral
3.
Cancers (Basel) ; 15(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835543

RESUMO

Extracts of European mistletoe (Viscum album) are popular as a complementary treatment for patients with many different cancer types. However, whether these extracts actually block bladder cancer progression remains unknown. The influence of different mistletoe extracts on bladder cancer cell growth and proliferation was investigated by exposing RT112, UMUC3, and TCCSup cells to mistletoe from hawthorn (Crataegi), lime trees (Tiliae), willow trees (Salicis), or poplar trees (Populi). The tumor cell growth and proliferation, apoptosis induction, and cell cycle progression were then evaluated. Alterations in integrin α and ß subtype expression as well as CD44 standard (CD44s) and CD44 variant (CD44v) expressions were evaluated. Cell cycle-regulating proteins (CDK1 and 2, Cyclin A and B) were also investigated. Blocking and knock-down studies served to correlate protein alterations with cell growth. All extracts significantly down-regulated the growth and proliferation of all bladder cancer cell lines, most strongly in RT112 and UMUC3 cells. Alterations in CD44 expression were not homogeneous but rather depended on the extract and the cell line. Integrin α3 was, likewise, differently modified. Integrin α5 was diminished in RT112 and UMUC3 cells (significantly) and TCCSup (trend) by Populi and Salicis. Populi and Salicis arrested UMUC3 in G0/G1 to a similar extent, whereas apoptosis was induced most efficiently by Salicis. Examination of cell cycle-regulating proteins revealed down-regulation of CDK1 and 2 and Cyclin A by Salicis but down-regulation of CDK2 and Cyclin A by Populi. Blocking and knock-down studies pointed to the influence of integrin α5, CD44, and the Cyclin-CDK axis in regulating bladder cancer growth. Mistletoe extracts do block bladder cancer growth in vitro, with the molecular action differing according to the cell line and the host tree of the mistletoe. Integrating mistletoe into a guideline-based treatment regimen might optimize bladder cancer therapy.

4.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232303

RESUMO

Combined cisplatin-gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK-cyclin axis and the Akt-mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt-mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Desoxicitidina/análogos & derivados , Humanos , Isotiocianatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Gencitabina
5.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230603

RESUMO

Combined cisplatin-gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK-cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy.

6.
Cancers (Basel) ; 14(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35804883

RESUMO

Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells remains questionable. An in vitro study was performed to investigate the influence of amygdalin (10 mg/mL) on the growth of a panel of therapy-naïve and docetaxel- or cabazitaxel-resistant PCa cell lines (PC3, DU145, and LNCaP cells). Tumor growth, proliferation, clonal growth, and cell cycle progression were investigated. The cell cycle regulating proteins (phospho)cdk1, (phospho)cdk2, cyclin A, cyclin B, p21, and p27 and the mammalian target of rapamycin (mTOR) pathway proteins (phospho)Akt, (phospho)Raptor, and (phospho)Rictor as well as integrin ß1 and the cytoskeletal proteins vimentin, ezrin, talin, and cytokeratin 8/18 were assessed. Furthermore, chemotactic activity and adhesion to extracellular matrix components were analyzed. Amygdalin dose-dependently inhibited tumor growth and reduced tumor clones in all (parental and resistant) PCa cell lines, accompanied by a G0/G1 phase accumulation. Cell cycle regulating proteins were significantly altered by amygdalin. A moderate influence of amygdalin on tumor cell adhesion and chemotaxis was observed as well, paralleled by modifications of cytoskeletal proteins and the integrin ß1 expression level. Amygdalin may, therefore, block tumor growth and disseminative characteristics of taxane-resistant PCa cells. Further studies are warranted to determine amygdalin's value as an antitumor drug.

7.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053528

RESUMO

Insulin-like growth factor-1 (IGF-1)-related signaling is associated with prostate cancer progression. Links were explored between IGF-1 and expression of integrin adhesion receptors to evaluate relevance for growth and migration. Androgen-resistant PC3 and DU145 and androgen-sensitive LNCaP and VCaP prostate cancer cells were stimulated with IGF-1 and tumor growth (all cell lines), adhesion and chemotaxis (PC3, DU145) were determined. Evaluation of Akt/mTOR-related proteins, focal adhesion kinase (FAK) and integrin α and ß subtype expression followed. Akt knock-down was used to investigate its influence on integrin expression, while FAK blockade served to evaluate its influence on mTOR signaling. Integrin knock-down served to investigate its influence on tumor growth and chemotaxis. Stimulation with IGF-1 activated growth in PC3, DU145, and VCaP cells, and altered adhesion and chemotactic properties of DU145 and PC3 cells. This was associated with time-dependent alterations of the integrins α3, α5, αV, and ß1, FAK phosphorylation and Akt/mTOR signaling. Integrin blockade or integrin knock-down in DU145 and PC3 cells altered tumor growth, adhesion, and chemotaxis. Akt knock-down (DU145 cells) cancelled the effect of IGF-1 on α3, α5, and αV integrins, whereas FAK blockade cancelled the effect of IGF-1 on mTOR signaling (DU145 cells). Prostate cancer growth and invasion are thus controlled by a fine-tuned network between IGF-1 driven integrin-FAK signaling and the Akt-mTOR pathway. Concerted targeting of integrin subtypes along with Akt-mTOR signaling could, therefore, open options to prevent progressive dissemination of prostate cancer.

8.
Biology (Basel) ; 10(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34681106

RESUMO

The serum level of soluble (s)E-cadherin is elevated in several malignancies, including prostate cancer (PCa). This study was designed to investigate the effects of sE-cadherin on the behavior of PCa cells in vitro, with the aim of identifying a potential therapeutic target. Growth as well as adhesive and motile behavior were evaluated in PC3, DU-145, and LNCaP cells. Flow cytometry was used to assess cell cycle phases and the surface expression of CD44 variants as well as α and ß integrins. Confocal microscopy was utilized to visualize the distribution of CD44 variants within the cells. Western blot was applied to investigate expression of α3 and ß1 integrins as well as cytoskeletal and adhesion proteins. Cell growth was significantly inhibited after exposure to 5 µg/mL sE-cadherin and was accompanied by a G0/G1-phase arrest. Adhesion of cells to collagen and fibronectin was mitigated, while motility was augmented. CD44v4, v5, and v7 expression was elevated while α3 and ß1 integrins were attenuated. Blocking integrin α3 reduced cell growth and adhesion to collagen but increased motility. sE-cadherin therefore appears to foster invasive tumor cell behavior, and targeting it might serve as a novel and innovative concept to treat advanced PCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA