Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(8): 1452-1465, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37322850

RESUMO

Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.


Assuntos
Biodiversidade , Ecossistema , Crescimento Demográfico , Fenótipo
2.
New Phytol ; 240(4): 1687-1702, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37243532

RESUMO

Taxonomic checklists used to verify published plant names and identify synonyms are a cornerstone of biological research. Four global authoritative checklists for vascular plants exist: Leipzig Catalogue of Vascular Plants, World Checklist of Vascular Plants, World Flora Online (successor of The Plant List, TPL), and WorldPlants. We compared these four checklists in terms of size and differences across taxa. We matched taxon names of these checklists and TPL against each other, identified differences across checklists, and evaluated the consistency of accepted names linked to individual taxon names. We assessed geographic and phylogenetic patterns of variance. All checklists differed strongly compared with TPL and provided identical information on c. 60% of plant names. Geographically, differences in checklists increased from low to high latitudes. Phylogenetically, we detected strong variability across families. A comparison of name-matching performance on taxon names submitted to the functional trait database TRY, and a check of completeness of accepted names evaluated against an independent, expert-curated checklist of the family Meliaceae, showed a similar performance across checklists. This study raises awareness on the differences in data and approach across these checklists potentially impacting analyses. We propose ideas on the way forward exploring synergies and harmonizing the four global checklists.


Assuntos
Lista de Checagem , Traqueófitas , Humanos , Filogenia , Plantas , Bases de Dados Factuais
3.
Ecol Lett ; 26(4): 504-515, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36740842

RESUMO

Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non-endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non-endemic species as functionally equivalent in island biogeography is not fundamentally wrong.


Assuntos
Clima , Plantas , Fenótipo , Folhas de Planta , Espanha , Ilhas
4.
Microbiome ; 10(1): 225, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36510248

RESUMO

The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (ß-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and ß-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract.


Assuntos
Ecologia , Metagenômica , Ecologia/métodos , Metagenômica/métodos , Metabolômica/métodos
5.
Ecol Lett ; 24(9): 1988-2009, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34015168

RESUMO

Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Fenótipo , Projetos de Pesquisa
6.
Nat Commun ; 11(1): 5071, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033235

RESUMO

Identifying species that are both geographically restricted and functionally distinct, i.e. supporting rare traits and functions, is of prime importance given their risk of extinction and their potential contribution to ecosystem functioning. We use global species distributions and functional traits for birds and mammals to identify the ecologically rare species, understand their characteristics, and identify hotspots. We find that ecologically rare species are disproportionately represented in IUCN threatened categories, insufficiently covered by protected areas, and for some of them sensitive to current and future threats. While they are more abundant overall in countries with a low human development index, some countries with high human development index are also hotspots of ecological rarity, suggesting transboundary responsibility for their conservation. Altogether, these results state that more conservation emphasis should be given to ecological rarity given future environmental conditions and the need to sustain multiple ecosystem processes in the long-term.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Internacionalidade , Mamíferos/fisiologia , Animais , Geografia , Humanos , Camada de Gelo , Filogenia , Análise de Componente Principal , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA